【題目】已知在實數(shù)集R上的可導(dǎo)函數(shù)f(x),滿足f(x+2)是奇函數(shù),且 >2,則不等式f(x)> x﹣1的解集是(
A.(﹣∞,2)
B.(2,+∞)
C.(0,2)
D.(﹣∞,1)

【答案】A
【解析】解:∵f(x+2)是奇函數(shù),
∴f(x)關(guān)于(2,0)對稱,f(2)=0
>2,
∴0<f′(x)<
令g(x)=f(x)﹣ x,
則g′(x)=f′(x)﹣ <0,函數(shù)在R上單調(diào)遞減,
∵g(2)=f(2)﹣1=﹣1,
∴不等式f(x)> x﹣1可化為g(x)>g(2),
∴x<2,
故選:A.
【考點精析】通過靈活運用函數(shù)奇偶性的性質(zhì),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在D上的函數(shù)f(x)若同時滿足:①存在M>0,使得對任意的x1 , x2∈D,都有|f(x1)﹣f(x2)|<M;②f(x)的圖象存在對稱中心.則稱f(x)為“P﹣函數(shù)”.
已知函數(shù)f1(x)= 和f2(x)=lg( ﹣x),則以下結(jié)論一定正確的是(
A.f1(x)和 f2(x)都是P﹣函數(shù)
B.f1(x)是P﹣函數(shù),f2(x)不是P﹣函數(shù)
C.f1(x)不是P﹣函數(shù),f2(x)是P﹣函數(shù)
D.f1(x)和 f2(x)都不是P﹣函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某藝校在一天的6節(jié)課中隨機安排語文、數(shù)學、外語三門文化課和其他三門藝術(shù)課各1節(jié),則在課程表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術(shù)課的概率為(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資公司現(xiàn)提供兩種一年期投資理財方案,一年后投資盈虧的情況如下表:

投資股市

獲利

不賠不賺

虧損

購買基金

獲利

不賠不賺

虧損

概率

概率

(Ⅰ)甲、乙兩人在投資顧問的建議下分別選擇“投資股市”和“買基金”,若一年后他們中至少有一人盈利的概率大于,求的取值范圍;

(Ⅱ)若,某人現(xiàn)有萬元資金,決定在“投資股市”和“購買基金”這兩種方案中選擇出一種,那么選擇何種方案可使得一年后的投資收益的數(shù)學期望值較大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面四邊形中, , 為等邊三角形,現(xiàn)將沿翻折得到四面體,點分別為的中點.

(Ⅰ)求證:四邊形為矩形;

(Ⅱ)當平面平面時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(﹣x)+f(x)=0,f(x+4)=f(x)滿足,且x∈(﹣2,0)時,f(x)=2x+ ,則f(log220)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中, 已知定圓,動圓過點且與圓相切,記動圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)是曲線上兩點,點關(guān)于軸的對稱點為 (異于點),若直線分別交軸于點,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,臺風中心從A地以每小時20千米的速度向東北方向(北偏東)移動,離臺風中心不超過300千米的地區(qū)為危險區(qū)域.城市B在A地的正東400千米處.請建立恰當?shù)钠矫嬷苯亲鴺讼,解決以下問題:

(1) 求臺風移動路徑所在的直線方程;

(2)求城市B處于危險區(qū)域的時間是多少小時?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= 是奇函數(shù),則使f(x)>4成立的x的取值范圍為

查看答案和解析>>

同步練習冊答案