已知為O原點,點P(x,y)在單位圓x2+y2=1上,點滿足,則

[  ]

A.

B.

C.

D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,O為坐標原點,點P(-1,
2
2
)在橢圓上,且
PF1
F1F2
=0,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點A,B:
(I)求橢圓的標準方程;    
(II)當OA•OB=
2
3
時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上的動點P(x,y)及兩定點A(-2,0),B(2,0),直線PA,PB的斜率分別是 k1,k2k1k2=-
1
4

(1)求動點P的軌跡C的方程;
(2)設直線l:y=kx+m與曲線C交于不同的兩點M,N.
①若OM⊥ON(O為坐標原點),證明點O到直線l的距離為定值,并求出這個定值
②若直線BM,BN的斜率都存在并滿足kBMkBN=-
1
4
,證明直線l過定點,并求出這個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,O為坐標原點,點P(-1,
2
2
)
在橢圓上,線段PF2與y軸的交點M滿足
PM
+
F2M
=
0
,⊙O是以F1F2為直徑的圓,一直線L:y=kx+m與⊙O相切,并與橢圓交于不同的兩點A,B
(1)求橢圓的標準方程.
(2)當
OA
OB
,且滿足
2
3
≤λ≤
3
4
時,求△AOB的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,O為坐標原點,點P(-1,
2
2
)在橢圓上,且
PF1
F1F2
=0

(1)求橢圓M的方程;
(2)⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點A,B當
OA
OB
,且滿足
2
3
≤λ≤
3
4
時,求弦長|AB|的取值范圍.

查看答案和解析>>

同步練習冊答案