已知函數(shù)
(1)當(dāng)時(shí),求該函數(shù)的值域;
(2)若對(duì)于恒成立,求有取值范圍。

(1);(2).

解析試題分析:(1)運(yùn)用對(duì)數(shù)的運(yùn)算法則將函數(shù)式化簡(jiǎn),令,用換元法求函數(shù)值域;(2)恒成立,問(wèn)題轉(zhuǎn)化為求函數(shù)最值問(wèn)題.
試題解析:(1)令時(shí),


(2)對(duì)恒成立,所以對(duì)恒成立,
易知函數(shù)上的最小值為0.故.
考點(diǎn):對(duì)數(shù)運(yùn)算法則,換元法求函數(shù)值域,含參數(shù)不等式恒成立問(wèn)題,求函數(shù)最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).其中
(1)若函數(shù)的圖像的一個(gè)公共點(diǎn)恰好在軸上,求的值;
(2)若是方程的兩根,且滿足,證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某公司生產(chǎn)品牌服裝的年固定成本是10萬(wàn)元,每生產(chǎn)千件,須另投入2 7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬(wàn)元,且 
(1)寫(xiě)出年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入 年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是常數(shù))在區(qū)間上有
(1)求的值;
(2)若當(dāng)時(shí),求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)的定義域和值域均為,求實(shí)數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,總有,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在一個(gè)周期內(nèi)的部分對(duì)應(yīng)值如下表:















(I)求的解析式;
(II)設(shè)函數(shù),,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長(zhǎng)度(注:區(qū)間的長(zhǎng)度定義為);
(Ⅱ)給定常數(shù),當(dāng)時(shí),求長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/dd/9/1hxtl4.png" style="vertical-align:middle;" />,且.設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線軸的垂線,垂足分別為

(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);
(2)問(wèn):是否為定值?若是,則求出該定值,若不是,則說(shuō)明理由;
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)不等式的解集為A,且
(Ⅰ)求的值
(Ⅱ)求函數(shù)的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案