在2與7之間插入n個(gè)數(shù),使這個(gè)以2為首項(xiàng)的數(shù)列成等差數(shù)列, Sn為其前n項(xiàng)和,并且S16=56,則n等于

A.26                   B.25                  C.24                     D.23

解析:設(shè)該數(shù)列的公差為d,則d==,又由S16=56,可求得d=,

∴n=24.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在1與2之間插入n個(gè)正數(shù)a1,a2,a3,…,an,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)b1,b2,b3,…,bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn
(1)求數(shù)列{An}和{Bn}的通項(xiàng);
(2)當(dāng)n≥7時(shí),比較An和Bn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在1與2之間插入n個(gè)正數(shù)a1,a2,a3,…,an,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)b1,b2,b3,…,bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

(1)求數(shù)列{An}和{Bn}的通項(xiàng);

(2)當(dāng)n≥7時(shí),比較An與Bn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在1與2之間插入n個(gè)正數(shù)A1,A2,A3,…,An,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)B1,B2,B3,…,Bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=A1A2A3An,Bn=B1+B2+…+

Bn.

(1)求數(shù)列{An} 和{Bn}的通項(xiàng);

(2)當(dāng)n≥7時(shí),比較AnBn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在1與2之間插入n個(gè)正數(shù)A1,A2,A3,…,An,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)B1,B2,B3,…,Bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=A1A2A3An,Bn=B1+B2+…+

Bn.

(1)求數(shù)列{An} 和{Bn}的通項(xiàng);

(2)當(dāng)n≥7時(shí),比較AnBn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在1與2之間插入n個(gè)正數(shù)a1,a2,a3,…,an,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)b1,b2,b3,…,bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

(1)求數(shù)列{An} 和{Bn}的通項(xiàng);

(2)當(dāng)n≥7時(shí),比較An與Bn的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案