14.下列各式的值與cosA相等的是( 。
A.sin($\frac{π}{2}$+A)B.sin($\frac{3π}{2}$-A)C.cos($\frac{π}{2}$+A)D.cos($\frac{π}{2}$-A)

分析 根據(jù)三角函數(shù)的誘導公式,進行化簡即可得出結論.

解答 解:對于A,sin($\frac{π}{2}$+A)=cosA,滿足題意;
對于B,sin($\frac{3π}{2}$-A)=-cosA,不滿足題意;
對于C,cos($\frac{π}{2}$+A)=-sinA,不滿足題意;
對于D,cos($\frac{π}{2}$-A)=sinA,不滿足題意.
故選:A.

點評 本題考查了三角函數(shù)誘導公式的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.復數(shù)($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2014的共軛復數(shù)是( 。
A.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iB.-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若復數(shù)z滿足(3-4i)•$\overline{z}$=|4+3i|,$\overline{z}$為z的共軛復數(shù),則z的虛部為( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$iD.$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,Sn=nan-n(n-1),且a1=1.
(Ⅰ) 求證{an}是等差數(shù)列,并求{an}的通項公式;
(Ⅱ) 設bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知|$\overrightarrow{a}$|=2$\sqrt{2}$,$\overrightarrow$=(1,1),且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$的坐標為( 。
A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2$\sqrt{2}$,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源:2015-2016學年江蘇泰興中學高二上學期期末數(shù)學(理)試卷(解析版) 題型:解答題

分別是橢圓的左右焦點,上一點,且軸垂直,直線的另一個交點為

(1)若直線的斜率為,求的離心率;

(2)若直線軸上的截距為2,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2015-2016學年江蘇泰興中學高二上學期期末數(shù)學(理)試卷(解析版) 題型:填空題

中,,則的外接圓半徑;類比到空間,若三棱錐的三條側棱兩兩互相垂直,且長度分別為,則三棱錐的外接球的半徑

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知i為虛數(shù)單位,復數(shù)z=(1+2i)i的共軛復數(shù)在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.圓x2+y2-4x+2y+4=0的半徑和圓心坐標分別為( 。
A.r=1;(-2,1)B.r=2;(-2,1)C.r=1;(2,-1)D.r=2;(2,-1)

查看答案和解析>>

同步練習冊答案