設(shè)F1,F(xiàn)2分別是橢圓E:x2+
y2b2
=1(0<b<1)的左、右焦點(diǎn),過F1的直線l與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(Ⅰ)求|AB|;
(Ⅱ)若直線l的斜率為1,求b的值.
分析:(1)由橢圓定義知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差數(shù)列,能夠求出|AB|的值.
(2)L的方程式為y=x+c,其中c=
1-b2
,設(shè)A(x1,y1),B(x1,y1),則A,B兩點(diǎn)坐標(biāo)滿足方程組
y=x+c
x2+
y2
b2
=1
,化簡得(1+b2)x2+2cx+1-2b2=0.然后結(jié)合題設(shè)條件和根與系數(shù)的關(guān)系能夠求出b的大。
解答:解:(1)由橢圓定義知|AF2|+|AB|+|BF2|=4
又2|AB|=|AF2|+|BF2|,得|AB|=
4
3

(2)L的方程式為y=x+c,其中c=
1-b2

設(shè)A(x1,y1),B(x2,y2),則A,B兩點(diǎn)坐標(biāo)滿足方程組
y=x+c
x2+
y2
b2
=1
.,
化簡得(1+b2)x2+2cx+1-2b2=0.
x1+x2=
-2c
1+b2
,x1x2=
1-2b2
1+b2

因?yàn)橹本AB的斜率為1,所以|AB|=
2
|x2-x1|

4
3
=
2
|x2-x1|

8
9
=(x1+x2)2-4x1x2=
4(1-b2)
(1+b2)2
-
4(1-2b2)
1+b2
=
8b4
(1+b2)2

解得b=
2
2
點(diǎn)評(píng):本題綜合考查橢圓的性質(zhì)及其運(yùn)用和直線與橢圓的位置關(guān)系,解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),過F1斜率為1的直線?與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求E的離心率;
(2)設(shè)點(diǎn)P(0,-1)滿足|PA|=|PB|,求E的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:x2+
y2b2
=1(0<b<1)的左、右焦點(diǎn),過F1的直線與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列
(Ⅰ)求△ABF2的周長;
(Ⅱ)求|AB|的長;
(Ⅲ)若直線的斜率為1,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:x2+
y2
b2
=1(0<b<1)
的左、右焦點(diǎn),過F1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓E:x2+
y2
b2
=1(0<b<1)
的左、右焦點(diǎn),過F1的直線?與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓E:
x2
a2
+
y2
b2
=1
,(a>b>0)的左、右焦點(diǎn),P是該橢圓上一個(gè)動(dòng)點(diǎn),且|PF1|+|PF2|=8,|F1F2|=4
3

(1)求橢圓E的方程;
(2)求出以點(diǎn)M(1,1)為中點(diǎn)的弦所在的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案