已知關于x的不等式
a-xx+1
≥0
的解集為P,不等式|x-1|<1的解集為Q.
(1)若a=3,求P;
(2)若P∪Q=P,求正數(shù)a的取值范圍.
分析:(1)把a=3代入
a-x
x+1
≥0
,得
x-3
x+1
≤0
,根據(jù)積商符號法則即可求解該不等式;
(2)根據(jù)絕對值不等式的解法求出Q,根據(jù)P∪Q=P得到Q⊆P,列出關于a的不等式,解此不等式即可求得正數(shù)a的取值范圍.
解答:解:(1)a=3,由
3-x
x+1
≥0
,得
x-3
x+1
≤0
(2分)
所以P={x|-1<x≤3}(4分)
(2)Q={x||x-1|<1}={x|0<x<2}(6分)
∵a>0,∴P={x|-1<x≤a}(8分)
∵P∪Q=P,∴Q⊆P(10分)
所以a≥2,即a的取值范圍是[2,+∞)(12分)
點評:此題是個中檔題.考查分式不等式解法和集合交集與子集之間的轉(zhuǎn)化,是解決此題的關鍵,同時考查學生靈活應用知識分析解決問題能力和計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式
a(x+1)x-2
<2的解集為A,且5∉A,
(1)求實數(shù)a的取值范圍;
(2)求集合A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式
a(x-1)x-2
>2的解集為A,且3∉A
(1)求a范圍;
(2)求集合A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式
(a+1)x-3x-1
<1

(Ⅰ)當a=1時,解該不等式;
(Ⅱ)當a>0時,解該不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
設函數(shù)f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)>0;
(2)已知關于x的不等式a+3<f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案