8.若無論實(shí)數(shù)a取何值時(shí),直線ax+y+a+1=0與圓x2+y2-2x-2y+b=0都相交,則實(shí)數(shù)b的取值范圍是(-∞,-6).

分析 求出直線的定點(diǎn),令該定點(diǎn)在圓內(nèi)部即可得出b的范圍.

解答 解:∵x2+y2-2x-2y+b=0表示圓,
∴$\sqrt{2-b}$>0,即b<2.
∵直線ax+y+a+1=0過定點(diǎn)(-1,-1).
∴點(diǎn)(-1,-1)在圓x2+y2-2x-2y+b=0內(nèi)部,
∴6+b<0,
解得b<-6.
∴b的范圍是(-∞,-6).
故答案為:(-∞,-6).

點(diǎn)評(píng) 本題考查了直線與圓的位置關(guān)系,圓的一般方程,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$則關(guān)于x的不等式f(f(x))≤3的解集為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=sin(ωx-\frac{π}{3})(ω>0)$,若函數(shù)f(x)在區(qū)間$(π,\frac{3π}{2})$上為單調(diào)遞減函數(shù),則實(shí)數(shù)ω的取值范圍是( 。
A.$[\frac{2}{3},\frac{11}{9}]$B.$[\frac{5}{6},\frac{11}{9}]$C.$[\frac{2}{3},\frac{3}{4}]$D.$[\frac{2}{3},\frac{5}{6}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,a=3,b=4,cosB=$\frac{3}{5}$,則sinC=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),當(dāng)k為何值時(shí),
k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-3$\overrightarrow$平行?平行時(shí)它們是同向還是反向?
(2)設(shè)f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{π}{2}+θ)-sin(\frac{3π}{2}-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若角α的終邊落在直線y=2x上,求sin2α-cos2α+sinαcosα的值1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+\frac{2}{e},x<0\\ \frac{x}{e^x},x≥0\end{array}\right.$,若f(x1)=f(x2)=f(x3)(x1<x2<x3),則$\frac{{f({x_2})}}{x_1}$的取值范圍為(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和是Sn=(n+2)2+k,當(dāng)k=-4時(shí),{an}是公差d=2的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線方程為y2=4x則焦點(diǎn)到準(zhǔn)線的距離為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案