精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=sin2x-cos2x-,x∈R.
(1)求函數f(x)的最小值和最小正周期;
(2)設△ABC的內角A,B,C的對邊分別為a,b,c且c=,f(C)=0,若sinB=2sinA,求a,b的值.
【答案】分析:(1)將f(x)解析式第二項利用二倍角的余弦函數公式化簡,整理后再利用兩角和與差的正弦函數公式及特殊角的三角函數值化為一個角的正弦函數,由正弦函數的值域得出f(x)的最小值,找出ω的值,代入周期公式,即可求出f(x)的最小正周期;
(2)由(1)確定的f(x)解析式及f(C)=0,求出sin(2C-)=1,由C的范圍,求出2x-的范圍,利用特殊角的三角函數值及正弦函數的圖象求出C的度數,由sinB=2sinA,利用正弦定理得到b=2a①,再利用余弦定理得到c2=a2+b2-2abcosC,將c與cosC的值代入得到關于a與b的方程,記作②,聯(lián)立①②即可求出a與b的值.
解答:解:(1)f(x)=sin2x-cos2x-
=sin2x--
=sin2x-cos2x-1=sin(2x-)-1,
∵-1≤sin(2x-)-≤1,
∴f(x)的最小值為-2,
又ω=2,
則最小正周期是T==π;
(2)由f(C)=sin(2C-)-1=0,得到sin(2C-)=1,
∵0<C<π,∴-<2C-,
∴2C-=,即C=,
∵sinB=2sinA,∴由正弦定理得b=2a①,又c=,
∴由余弦定理,得c2=a2+b2-2abcos,即a2+b2-ab=3②,
聯(lián)立①②解得:a=1,b=2.
點評:此題屬于解三角形的題型,涉及的知識有:正弦、余弦定理,正弦函數的定義域與值域,二倍角的余弦函數公式,以及兩角和與差的正弦函數公式,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ax+bsinx,當x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數m的取值范圍;
(3)設直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當的說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-blnx在(1,2]是增函數,g(x)=x-b
x
在(0,1)為減函數.
(1)求b的值;
(2)設函數φ(x)=2ax-
1
x2
是區(qū)間(0,1]上的增函數,且對于(0,1]內的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數方程為
x=t-3
y=
3
 t
(t為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案