當(dāng)n為正整數(shù)時,區(qū)間In=(n,n+1),an表示函數(shù)在In上函數(shù)值取整數(shù)值的個數(shù),當(dāng)n>1時,記bn=an-an-1.當(dāng)x>0,g(x)表示把x“四舍五入”到個位的近似值,如當(dāng)n為正整數(shù)時,cn表示滿足的正整數(shù)k的個數(shù).

(Ⅰ)求b2,c2;

(Ⅱ)求證:n>1時,bn=cn;

(Ⅲ)當(dāng)n為正整數(shù)時,集合中所有元素之和為Sn,記Tn=(2n+2-n)Sn,求證:T1+T2+T3+…Tn<3.

答案:
解析:

  (Ⅰ)∵=x2-1=(x+1)(x-1),

  ∴當(dāng)為增函數(shù),1分

  

  ∴……2分

  同理時,為增函數(shù),

  

  ∴3分

  ∴4分

  又∵表示滿足的正整數(shù)的個數(shù).

  ∴5分

  ∴

  ∴6分

  (Ⅱ)當(dāng)為正整數(shù),且,時,為增函數(shù),

  

  

  

  

  ……8分

  ∴……9分

  又∵表示滿足的正整數(shù)的個數(shù),

  ∴10分

  ∴

  ∴個.11分

  ∴

  ∴……12分

  (Ⅲ)由(2)知:

  

  ∴

  13分

 。

  ……14分

  ∴

  

  ……15分

  ………16分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

規(guī)定Cmx=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且C0x=1,這是組合數(shù)Cmn(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C3-15的值;
(2)設(shè)x>0,當(dāng)x為何值時,
C
3
x
(C
1
x
)2
取得最小值?
(3)組合數(shù)的兩個性質(zhì);
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推廣到Cmx(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
變式:規(guī)定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且Ax0=1,這是排列數(shù)Anm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求A-153的值;
(2)排列數(shù)的兩個性質(zhì):①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數(shù))是否都能推廣到Axm(x∈R,m是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(3)確定函數(shù)Ax3的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南三模)設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)導(dǎo)函數(shù).
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)k為偶數(shù)時,數(shù)列{an}滿足a1=1,anf(an)
=a
2
n+1
-3
.證明:數(shù)列{
a
2
n
}中不存在成等差數(shù)列的三項;
(Ⅲ)當(dāng)k為奇數(shù)時,設(shè)bn=
1
2
f
(n)-n
,數(shù)列{bn}的前n項和為Sn,證明不等式(1+bn)
1
bn+1
e對一切正整數(shù)n均成立,并比較S2012-1與ln2012的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)(>0),過點P(1,0)作曲線的兩條切線PM、PN,為M、N.

(1)當(dāng)t=2時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)設(shè)|MN|=g(t),求函數(shù)g(t)的表達(dá)式;

(3)在(2)的條件下,若對任意正整數(shù),在區(qū)間[2,+]內(nèi)總存在+1個實數(shù)、、…、、,使得不等式g()+g()+…+g()<g()成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年云南省高三數(shù)學(xué)一輪復(fù)習(xí)章節(jié)練習(xí):計數(shù)原理(解析版) 題型:解答題

規(guī)定Cmx=,其中x∈R,m是正整數(shù),且Cx=1,這是組合數(shù)Cmn(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C3-15的值;
(2)設(shè)x>0,當(dāng)x為何值時,取得最小值?
(3)組合數(shù)的兩個性質(zhì);
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推廣到Cmx(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
變式:規(guī)定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且Ax=1,這是排列數(shù)Anm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求A-153的值;
(2)排列數(shù)的兩個性質(zhì):①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數(shù))是否都能推廣到Axm(x∈R,m是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(3)確定函數(shù)Ax3的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案