觀察下列等式:,
,
,

由以上等式推測到一個一般的結論:對于n∈N*=   
【答案】分析:由已知中的三個式子,我們分析等式左邊每一個累加項的變化趨勢,可以歸納出其通項為,分析等式右邊的式子,發(fā)現(xiàn)每一個式了均為兩項差的形式,且被減數(shù)均為1,減數(shù)為,由此即可得到結論.
解答:解:由已知中的等式,
,

,

我們可以推斷:
對于n∈N*=
故答案為:
點評:本題考查的知識點是歸納推理,歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、觀察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=
(1+2+3+4)2,…,根據(jù)上述規(guī)律,第四個等式為
13+23+33+43+53=(1+2+3+4+5)2(或152

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

15、觀察下列等式:22=1+3,23=3+5,24=7+9,••,32=1+3+5,33=7+9+11,34=25+27+29,…,42=1+3+5+7,43=13+15=17+19,44=61+63+65+67,…按此規(guī)律,在pq(p、q都是不小于2的整數(shù))寫出的等式中,右邊第一項是
pq-1-p+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列等式1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49,…照此規(guī)律,第六個等式是
6+7+8+9+10+11+12+13+14+15+16=121
6+7+8+9+10+11+12+13+14+15+16=121

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)觀察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根據(jù)以上規(guī)律,13+23+33+43+53+63+73+83=
1296
1296
.(結果用具體數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列等式(x2+x+1)0=1,(x2+x+1)1=x2+x+1,(x2+x+1)2=x4+2x3+3x2+2x+1,(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1…
可以推測(x2+x+1)5展開式中各項系數(shù)的和為
35
35
.第四、五、六項系數(shù)的和是
136
136

查看答案和解析>>

同步練習冊答案