【題目】這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
全國累計報告確診病例數(shù)量(萬人) | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 | 3.1 | 3.5 |
(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?
(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測2月10日全國累計報告確診病例數(shù).
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為:
,.
【答案】(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測2月10日全國累計報告確診病例數(shù)約有4.5萬人.
【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關(guān)性越高來判斷.
(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.
(1)由已知數(shù)據(jù)得,,,
所以,
,
所以.
因為與的相關(guān)近似為0.99,說明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.
(2)由(1)得,,
,
所以,關(guān)于的回歸方程為:,
2月10日,即代入回歸方程得:.
所以預(yù)測2月10日全國累計報告確診病例數(shù)約有4.5萬人.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點, 與原點構(gòu)成,且滿足,求面積的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為,
,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標與直角坐標的互化公式可得
可得曲線C的極坐標方程.
(2)由(1)不妨設(shè)M(),,(),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標方程為,
曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,
所以曲線C的極坐標方程為,
即.
(2)由(1)不妨設(shè)M(),,(),
,
,
當(dāng) 時, ,
所以△MON面積的最大值為.
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù)的定義域為;
(1)求實數(shù)的取值范圍;
(2)設(shè)實數(shù)為的最大值,若實數(shù), , 滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:,半徑為2的圓與相切,圓心在軸上且在直線的右上方.
(1)求圓的方程;
(2)過點的直線與圓交于,兩點(在軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射擊運動員進行射擊訓(xùn)練,前三次射擊在靶上的著彈點剛好是邊長為的等邊三角形的三個頂點.
(Ⅰ)第四次射擊時,該運動員瞄準區(qū)域射擊(不會打到外),則此次射擊的著彈點距的距離都超過的概率為多少?(彈孔大小忽略不計)
(Ⅱ) 該運動員前三次射擊的成績(環(huán)數(shù))都在區(qū)間內(nèi),調(diào)整一下后,又連打三槍,其成績(環(huán)數(shù))都在區(qū)間內(nèi).現(xiàn)從這次射擊成績中隨機抽取兩次射擊的成績(記為和)進行技術(shù)分析.求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有學(xué)生500人,學(xué)校為了解學(xué)生課外閱讀時間,從中隨機抽取了50名學(xué)生,收集了他們2018年10月課外閱讀時間(單位:小時)的數(shù)據(jù),并將數(shù)據(jù)進行整理,分為5組:[10,12),[12,14),[14,16),[16,18),[18,20],得到如圖所示的頻率分布直方圖.
(Ⅰ)試估計該校所有學(xué)生中,2018年10月課外閱讀時間不小于16小時的學(xué)生人數(shù);
(Ⅱ)已知這50名學(xué)生中恰有2名女生的課外閱讀時間在[18,20],現(xiàn)從課外閱讀時間在[18,20]的樣本對應(yīng)的學(xué)生中隨機抽取2人,求至少抽到1名女生的概率;
(Ⅲ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,試估計該校學(xué)生2018年10月課外閱讀時間的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.
(1)求圓的方程。
(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且△的面積最大?若存在,求出點的坐標及對應(yīng)的△的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其命名的函數(shù)被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,以下命題正確的個數(shù)是( )
下面給出關(guān)于狄利克雷函數(shù)f(x)的五個結(jié)論:
①對于任意的x∈R,都有f(f(x))=1;
②函數(shù)f(x)偶函數(shù);
③函數(shù)f(x)的值域是{0,1};
④若T≠0且T為有理數(shù),則f(x+T)=f(x)對任意的x∈R恒成立;
⑤在f(x)圖象上存在不同的三個點A,B,C,使得△ABC為等邊角形.
A.2B.3C.4D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com