已知函數(shù)f(x)的圖象與函數(shù)y=3x的圖象關(guān)于直線y=x對(duì)稱,則f(9)=________.
2
分析:法一:根據(jù)兩個(gè)函數(shù)的圖象關(guān)于直線y=x對(duì)稱可知這兩個(gè)函數(shù)互為反函數(shù),故只要利用求反函數(shù)的方法求出原函數(shù)的反函數(shù),然后將9代入函數(shù)的解析式即可.
法二:假設(shè)f(9)=t,則函數(shù)f(x)的圖象過點(diǎn)(9,t),則點(diǎn)(9,t)關(guān)于直線y=x對(duì)稱的點(diǎn)(t,9)在函數(shù)y=3x的圖象上,代入解析式可求出t的值.
解答:法一:∵函數(shù)y=f(x)的圖象與函數(shù)y=3x的圖象關(guān)于直線y=x對(duì)稱,
∴函數(shù)y=f(x)與函數(shù)y=3x互為反函數(shù),
又∵函數(shù)y=3x的反函數(shù)為:
y=log3x,
即f(x)=log3x,
∴f(9)=log39=2,
故答案為:2.
法二:假設(shè)f(9)=t,則函數(shù)f(x)的圖象過點(diǎn)(9,t)
則點(diǎn)(9,t)關(guān)于直線y=x對(duì)稱的點(diǎn)(t,9)在函數(shù)y=3x的圖象上
即9=3t,解得t=2
故答案為:2.
點(diǎn)評(píng):本小題主要考查反函數(shù)、對(duì)數(shù)式的運(yùn)算等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.