2.集合A={-2,-1,0,1,2},B={-1,2,3},則A∪B=( 。
A.{-2,-1,0,1,2}B.{-1,2,3}C.{-2,-1,0,1,2,3}D.{-1,2}

分析 利用并集定義直接求解.

解答 解:∵集合A={-2,-1,0,1,2},B={-1,2,3},
∴A∪B={-2,-1,0,1,2,3}.
故選:C.

點評 本題考查并集的求法,是基礎題,解題時要認真審題,注意并集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.在6件產品中有2件次品,連續(xù)抽3次,每次抽1件,求:
(1)不放回抽樣時,抽到次品數(shù)ξ的分布列;
(2)放回抽樣時,抽到次品數(shù)η的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知$f(x)=3sin({ωx+\frac{π}{6}})({ω>0})$,若f(x)圖象向左平移$\frac{π}{6}$個單位后圖象與y=3cosωx圖象重合.
(1)求ω的最小值;
(2)在條件(1)下將下表數(shù)據(jù)補充完整,并用“五點法”作出f(x)在一個周期內的圖象.
$ωx+\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
x
f(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{10π}{3}$)的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.從1,2,3,4,5這5個數(shù)字中任取3個數(shù)字組成沒有重復數(shù)字的三位數(shù),則這個三位數(shù)是偶數(shù)的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發(fā),繞著點O順時針方向旋轉至OD,在旋轉的過程中,記∠AOP為x(x∈[0,π),OP所經過的在正方形ABCD內的區(qū)域(陰影部分)的面積S=f(x),那么對于函數(shù)f(x)有以下三個結論,其中正確的是( 。
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$
②函數(shù)f(x)在($\frac{π}{2}$,π)上為減函數(shù)
③任意x∈[0,$\frac{π}{2}$],都有f(x)+f(π-x)=4.
A.B.C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在某商業(yè)促銷的最后一場活動中,甲、乙、丙、丁、戊、己6名成員隨機抽取4個禮品,每人最多抽一個禮品,且禮品中有兩個完全相同的筆記本電腦,兩個完全相同的山地車,則甲、乙兩人都抽到禮品的情況有(  )
A.36種B.24種C.18種D.9種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.過橢圓$\frac{x^2}{m}+\frac{y^2}{m-4}=1$(m>4)右焦點F的圓與圓O:x2+y2=1外切,則該圓直徑FQ的端點Q的軌跡是(  )
A.一條射線B.兩條射線C.雙曲線的一支D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.我們把滿足:${x_{n+1}}={x_n}-\frac{{f({x_n})}}{{f'({x_n})}}$的數(shù)列{xn}叫做牛頓數(shù)列.已知函數(shù)f(x)=x2-1,數(shù)列{xn}為牛頓數(shù)列,設${a_n}=ln\frac{{{x_n}-1}}{{{x_n}+1}}$,已知a1=2,則a3=8.

查看答案和解析>>

同步練習冊答案