【題目】為了得到函數 ,x∈R的圖象,只需把函數y=2sinx,x∈R的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍縱坐標不變)
B.向右平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍(縱坐標不變)
C.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
D.向右平移 個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在[1,+∞)的函數,對任意正實數x,f(3x)=3f(x),且f(x)=1﹣|x﹣2|,1≤x≤3,則使得f(x)=f(2015)的最小實數x為( )
A.172
B.415
C.557
D.89
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(已知冪函數f(x)=x ,(k∈Z)滿足f(2)<f(3).
(1)求實數k的值,并求出相應的函數f(x)解析式;
(2)對于(1)中的函數f(x),試判斷是否存在正數q,使函數g(x)=1﹣qf(x)+(2q﹣1)x在區(qū)間[﹣1,2]上值域為 .若存在,求出此q.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,PA=AD=AB=2BC,M,N分別為PC,PB的中點. (Ⅰ)求證:PB⊥DM;
(Ⅱ)求CD與平面ADMN所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合 A={x|﹣1<x<1},B={x|0<x<2},集合 C={x|x>a}.
(1)求集合A UCRB;
(2)若A∩C≠φ,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】P是雙曲線 =1(a>0,b>0)上的點,F1、F2是其焦點,且 =0,若△F1PF2的面積是9,a+b=7,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AB⊥AD,CD⊥AD,PA⊥平面ABCD,PA=AD=CD=2AB=2,M為PC的中點. (Ⅰ)求證:BM∥平面PAD;
(Ⅱ)平面PAD內是否存在一點N,使MN⊥平面PBD?若存在,確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2﹣6x+5<0},B={x| <2x﹣4<16},C={x|﹣a<x≤a+3}
(1)求A∪B和(RA)∩B
(2)若A∪C=A,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com