【題目】如圖,在四棱錐P﹣ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,PA=AD=AB=2BC,M,N分別為PC,PB的中點. (Ⅰ)求證:PB⊥DM;
(Ⅱ)求CD與平面ADMN所成的角的正弦值.

【答案】解:(Ⅰ)解法1:∵N是PB的中點,PA=AB,∴AN⊥PB. ∵PA⊥平面ABCD,所以AD⊥PA.
又AD⊥AB,PA∩AB=A,∴AD⊥平面PAB,AD⊥PB.
又AD∩AN=A,∴PB⊥平面ADMN.
∵DM平面ADMN,∴PB⊥DM
解法2:如圖,以A為坐標原點建立空間直角坐標系A﹣xyz,設BC=1,
可得,A(0,0,0),P(0,0,2),B(2,0,0),C(2,1,0), ,D(0,2,0).
因為 ,所以PB⊥DM.

(Ⅱ)解法1:取AD中點Q,連接BQ和NQ,則BQ∥DC,又PB⊥平面ADMN,∴CD與平面ADMN所成的角為∠BQN.
設BC=1,在Rt△BQN中,則 ,故
所以CD與平面ADMN所成的角的正弦值為
解法2:因為
所以 PB⊥AD,又PB⊥DM,所以PB⊥平面ADMN,
因此 的余角即是CD與平面ADMN所成的角.
因為
所以CD與平面ADMN所成的角的正弦值為
【解析】(Ⅰ)解法1 先由AD⊥PA.AD⊥AB,證出AD⊥平面PAB得出AD⊥PB.又N是PB的中點,PA=AB,得出AN⊥PB.證出PB⊥平面ADMN后,即可證出PB⊥DM. 解法2:如圖,以A為坐標原點建立空間直角坐標系A﹣xyz,設BC=1,通過證明 證出PB⊥DM (Ⅱ)解法1:取AD中點Q,連接BQ和NQ,則BQ∥DC,又PB⊥平面ADMN,所以CD與平面ADMN所成的角為∠BQN.在Rt△BQN中求解即可. 解法2,通過 PB⊥平面ADMN,可知 是平面ADMN 的一個法向量, 的余角即是CD與平面ADMN所成的角.
【考點精析】本題主要考查了空間中直線與直線之間的位置關系和直線與平面垂直的判定的相關知識點,需要掌握相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點;一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為 ,且過點D(2,0).
(1)求該橢圓的標準方程;
(2)設點 ,若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有三個房間需要粉刷,粉刷方案要求:每個房間只用一種顏色,且三個房間顏色各不相同.已知三個房間的粉刷面積(單位:m2)分別為x,y,z,,且xyz,三種顏色涂料的粉刷費用(單位:元/m2)分別為a,b,c,且abc,在不同的方案中,最低的總費用(單位:元)是()
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga|x+1|(a>0且a≠1),當x∈(0,1)時,恒有f(x)<0成立,則函數(shù)g(x)=loga(﹣ x2+ax)的單調遞減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F1 , F2分別為橢圓 +y2=1的焦點,點A,B在橢圓上,若 =5 ;則點A的坐標是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù) ,x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍縱坐標不變)
B.向右平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍(縱坐標不變)
C.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
D.向右平移 個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)設bn=an+1﹣an , 證明{bn}是等差數(shù)列;
(Ⅱ)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個棱錐的三視圖如圖,則該棱錐的全面積(單位:cm2)為(
A.48+12
B.48+24
C.36+12
D.36+24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy內,動點P到定點F(﹣1,0)的距離與P到定直線x=﹣4的距離之比為
(1)求動點P的軌跡C的方程;
(2)設點A、B是軌跡C上兩個動點,直線OA、OB與軌跡C的另一交點分別為A1、B1 , 且直線OA、OB的斜率之積等于- ,問四邊形ABA1B1的面積S是否為定值?請說明理由.

查看答案和解析>>

同步練習冊答案