已知正三棱錐A-BCD中,底面邊長BC為3,側(cè)棱長AB為,求此正三棱錐的體積及內(nèi)切球的表面積.

【答案】分析:設(shè)底面正三角形BCD的中心為O,由三角形的知識可得棱錐的高和底面積,代入體積公式可得;設(shè)內(nèi)切球的半徑為R,則由等體積的方法可求半徑,由球的表面積公式可得.
解答:解:設(shè)底面正三角形BCD的中心為O,可得OB==,
故AO===,
而正三角形BCD的面積S==,
故此正三棱錐的體積V===;
設(shè)內(nèi)切球的半徑為R,則由等體積的方法可得:
(S△ABC+S△ACD+S△ABD)==
代入數(shù)據(jù)可得:R•=,解之可得R=
故內(nèi)切球的表面積S′=4πR2=
點評:本題考查三棱錐的體積的求解,涉及內(nèi)切球的半徑的求解,等體積法是求解半徑的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐A-BCD中,底面邊長BC為3,側(cè)棱長AB為
6
,求此正三棱錐的體積及內(nèi)切球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考北京四中全真模擬試卷——數(shù)學(xué) 題型:044

已知正三棱錐A-BCD的底邊長為a,E,F(xiàn)分別是AB,BC的中點,且AC⊥DE.

(1)求此正三棱錐的體積V;

(2)求二面角E-FD-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知正三棱錐A―BCD中,E、F分別是棱AB、BC的中點,EF⊥DE,且BC=2.

(1)求此正三棱錐的高;

(2)求二面角E―FD―B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱錐A―BCD中,E、F分別是棱AB、BC的中點,EF⊥DE,且BC=2.

(1)求此正三棱錐的高;

(2)求二面角E―FD―B的大。

查看答案和解析>>

同步練習(xí)冊答案