已知函數(shù)的圖象經(jīng)過點.

1)求實數(shù)的值;

2)設(shè),求函數(shù)的最小正周期與單調(diào)遞增區(qū)間.

 

1;(2)最小正周期為,單調(diào)遞增區(qū)間為.

【解析】

試題分析:1)將點代入函數(shù)的解析式即可求出實數(shù)的值;(2)根據(jù)(1)中的結(jié)果,先將函數(shù)的解析式進行化簡,化簡為,再根據(jù)周期公式計算函數(shù)的最小正周期,再利用整體法對施加相應(yīng)的限制條件,解出的取值范圍,即可求出函數(shù)的單調(diào)遞增區(qū)間.

試題解析:1)由于函數(shù)的圖象經(jīng)過點

因此,解得,

所以;

2

,

因此函數(shù)的最小正周期

,解得,

故函數(shù)的單調(diào)遞增區(qū)間為.

考點1.二倍角公式;2.三角函數(shù)的周期性與單調(diào)性

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題

在直角坐標(biāo)系xOy,O為極點,x軸非負半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-)=1,M,N分別為Cx,y軸的交點.

(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo).

(2)設(shè)MN的中點為P,求直線OP的極坐標(biāo)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高中數(shù)學(xué)全國各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題

已知,,且直線與曲線相切.

1)若對內(nèi)的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;

2)當(dāng)時,求最大的正整數(shù),使得對是自然對數(shù)的底數(shù))內(nèi)的任意個實數(shù) 都有成立;

3)求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知A=x|,xR},B=x||x-i|<,i為虛數(shù)單位,x>0,AB=( )

A.(0,1B.(1,2) C.(2,3) D.(3,4)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中為自然對數(shù)的底數(shù)).

1)求函數(shù)的單調(diào)區(qū)間;

2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問函數(shù)上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:填空題

一個四棱錐的底面為菱形,其三視圖如圖所示,則這個四棱錐的體積是 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù)的定義域為,則實數(shù)的取值范圍是( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一文科數(shù)學(xué)試卷(解析版) 題型:選擇題

任取實數(shù)、,則、滿足的概率為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)若函數(shù)yf(x)23個零點,則實數(shù)a的值為(  )

A.-4 B.-2 C0 D2

 

查看答案和解析>>

同步練習(xí)冊答案