13.已知f(x)是奇函數(shù),且當x>0時,f(x)=x2+2x,則當x<0時,f(x)=-x2+2x.

分析 設x<0,則-x>0,再根據(jù)條件利用奇函數(shù)的定義求得f(x)的解析式.

解答 解:設x<0,則-x>0,∵當x>0時,f(x)=x2+2x,f(x)是奇函數(shù),
∴f(-x)=(-x)2+2(-x)=x2-2x=-f(x),∴f(x)=-x2+2x,
故答案為:-x2+2x.

點評 本題主要考查利用函數(shù)的奇偶性,求函數(shù)的解析式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)為f(x)的導函數(shù),已知y=f′(x)的圖象如圖所示,若兩個正數(shù)a、b滿足f(2a+b)>1,則$\frac{b+1}{a+1}$的取值范圍是( 。
A.($\frac{1}{5}$,$\frac{1}{3}$)B.(-∞,3)C.(-∞,$\frac{1}{3}$)D.($\frac{1}{3}$,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=mx2-mx-1(m≠0),若對于x∈[1,3],f(x)<-m+5恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知集合A={x|1≤x<5},B={x|-a<x≤a+3}
(1)若a=1,U=R,求∁UA∩B;
(2)若B∩A=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=x2+2x-3,x∈[0,2],則函數(shù)f(x)的值域為[-3,5]..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.集合A={x|x2-3x+2<0},B={x|$\frac{1}{2}<{2^{x-1}}$<8},C={x|(x+2)(x-m)<0},
其中m∈R.
(Ⅰ)求A∩B;
(Ⅱ)若(A∪B)⊆C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.原命題為:“若x=1,則x2=1”.
(1)寫出原命題的逆命題、否命題和逆否命題,并判斷這四個命題的真假性;
(2)寫出原命題的否定,并判斷其真假性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.將參加夏令營的600名學生編號為:001,002,…,600,采用系統(tǒng)抽樣方法抽取一個容量為50的樣本,且隨機抽得的號碼為003.這600名學生分住在三個營區(qū),從001到240在第一營區(qū),從241到496為第二個營區(qū),從497到600為第三營區(qū),則第二營區(qū)被抽中的人數(shù)為22.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù) y=x2+2(a-1)x+5在區(qū)間(4,+∞)上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.a≤-2B.a≥-3C.a≤-6D.a≥-6

查看答案和解析>>

同步練習冊答案