19.函數(shù)f(x)=log2(3x+1),x∈(0,+∞)的值域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

分析 根據(jù)對數(shù)函數(shù)的圖象及性質(zhì)求解.

解答 解:根據(jù)題意,對數(shù)的底數(shù)大于1,對數(shù)函數(shù)單調(diào)遞增,
當(dāng)x∈(0,+∞)時(shí),3x>0,可得:3x+1>1,
那么函數(shù)f(x)=log2(3x+1)>log21=0,
即log2(3x+1)>0,
故可知函數(shù)的值域?yàn)椋?,+∞).
故選A.

點(diǎn)評 本題考察了對數(shù)函數(shù)的圖象及性質(zhì)的運(yùn)用.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求角C的值;
(Ⅱ)若c=$\sqrt{3}$,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=sinx,x∈[-π,π],則不等式f(x)≤-$\frac{1}{2}$的解集為{x丨-$\frac{5π}{6}$≤x≤-$\frac{π}{6}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若二次函數(shù)f(x)的圖象經(jīng)過點(diǎn)(4,3),其在x軸上截得的線段長為2,并且對任意的x∈R,都有f(2-x)=f(x+2).
(1)求f(x)的解析式.
(2)若不等式f(x)>2x+m在x∈[-1,1]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(1,k),$\overrightarrow$=(2,2),且$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$垂直,那么k的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法正確的是( 。
A.圓錐的母線長等于底面圓直徑B.圓柱的母線與軸垂直
C.圓臺(tái)的母線與軸平行D.球的直徑必過球心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b>0,a+2b=1,則t=$\frac{1}{a}$+$\frac{1}$的最小值是(  )
A.3+2$\sqrt{2}$B.3-2$\sqrt{2}$C.1+2$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若等邊三角形ABC的邊長為2,N為AB的中點(diǎn),且AB上一點(diǎn)M滿足$\overrightarrow{CM}$=x$\overrightarrow{CA}$+y$\overrightarrow{CB}$,則當(dāng)$\frac{1}{x}$+$\frac{4}{y}$取最小值時(shí),$\overrightarrow{CM}$•$\overrightarrow{CN}$=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=cos(2x-\frac{π}{3})+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將y=f(x)的圖象向左平移$\frac{π}{3}$個(gè)單位長度,再將得到的圖象橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),得到y(tǒng)=g(x)的圖象;若函數(shù)y=g(x)在區(qū)間$(\frac{π}{2},\frac{13π}{4})$上的圖象與直線y=a有三個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案