(2006•寶山區(qū)二模)已知復(fù)數(shù)z滿足(1-i)z=i,則|z|=
2
2
2
2
分析:由已知的等式求出復(fù)數(shù)z,然后直接利用復(fù)數(shù)模的公式求模.
解答:解:由(1-i)z=i,得z=
i
1-i
=
i(1+i)
(1-i)(1+i)
=
-1+i
2
=-
1
2
+
i
2

|z|=
(-
1
2
)2+(
1
2
)2
=
2
2

故答案為
2
2
點(diǎn)評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)的計(jì)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)橢圓
x2
4
+y2=1
的兩個焦點(diǎn)為F1、F2,過F1作垂直于x軸的直線與橢圓相交,一個交點(diǎn)為P,則|PF2|=
7
2
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)已知集合S={x|y=lg(1-x)},T={x||2x-1|≤3},則S∩T=
{x|-1≤x<1}
{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)在等差數(shù)列{an}中,已知a7=13,a15=29,則通項(xiàng)公式an=
2n-1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)若P是圓x2+y2-4x+2y+1=0上的動點(diǎn),則P到直線4x-3y+24=0的最小距離是
5
5

查看答案和解析>>

同步練習(xí)冊答案