已知f(x),g(x)滿f(5)=2,f'(5)=3,g(5)=1,g'(5)=2,則函數(shù)的圖象在x=5處的切線方程為   
【答案】分析:由求導(dǎo)公式可得F′(x)=,,故根據(jù)導(dǎo)數(shù)的幾何意義可得k=F′(5)=-5;又由題意得F(5)=4,即切點(diǎn)為(5,4),代入直線的點(diǎn)斜式方程即可求解.
解答:解:∵F(x)=
∴F′(x)=,
∴k=F′(5)=-5;
∵F(5)==4,
∴切點(diǎn)為(5,4),
∴切線方程為y-4=-5(x-5),
整理得 5x+y-29=0.
故答案為5x+y-29=0.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的運(yùn)算和導(dǎo)數(shù)的幾何意義,其中商的求導(dǎo)法則是難點(diǎn)也是易錯(cuò)點(diǎn).屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有窮數(shù)列{
f(n)
g(n)
},(n=1,2,…,10)
中任取前k項(xiàng)相加,則前k項(xiàng)和大于
15
16
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f(x)g'(x)>f'(x)g(x),f(x)=ax•g(x),(a>0且a≠1)
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,令an=
f(n)
g(n)
,則使數(shù)列{an}的前n項(xiàng)和Sn超過
15
16
的最小自然數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=axg(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,對(duì)于有窮數(shù)列
f(n)
g(n)
=(n=1,2,…0)
,任取正整數(shù)k(1≤k≤10),則前k項(xiàng)和大于
15 
16
的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),且f(x)=g(x)ax(a>0且a≠1),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a的值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無需證明).
(2)求使f(x)<0的x取值范圍.
(3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案