【題目】(12分)

在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離之和為4.

(1)試求點(diǎn)AM的方程.

(2)若斜率為的直線l與軌跡M交于C,D兩點(diǎn),為軌跡M上不同于C,D的一點(diǎn),記直線PC的斜率為,直線PD的斜率為,試問是否為定值.若是,求出該定值;若不同,請(qǐng)說出理由.

【答案】(1).

(2)是定值.

【解析】分析:(1)由橢圓的定義,得到點(diǎn)的軌跡是橢圓,即可求得的值,從而得到橢圓的方程;

(2)設(shè)直線的方程,聯(lián)立方程組,得到,利用斜率公式得到,即可化簡利用為定值.

解析:(1)由題意,則,

故橢圓的定義知點(diǎn)的軌跡是橢圓,且,則

所以軌跡的方程為 .

(2),理由如下:

設(shè)直線的方程為,

聯(lián)立 ,得

當(dāng)時(shí),直線與橢圓有兩個(gè)交點(diǎn),

,

因?yàn)?/span>,

所以

,所以(定值).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)有下列幾個(gè)命題,其中正確的命題是(

A.函數(shù)上是增函數(shù)

B.函數(shù)上是減函數(shù)

C.函數(shù)的單調(diào)區(qū)間是

D.已知上是增函數(shù),若,則有

E.已知函數(shù)是奇函數(shù),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).

(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位長度后得到函數(shù)的圖象,則下列關(guān)于的說法正確的是(

A.最大值為1,圖象關(guān)于直線對(duì)稱

B.周期為,圖象關(guān)于點(diǎn)對(duì)稱

C.圖象關(guān)于y軸對(duì)稱,在上單調(diào)遞減

D.上單調(diào)遞增,且為偶函數(shù)

E.上單調(diào)遞減,且為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)圖象在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性

(3)是否存在實(shí)數(shù),對(duì)任意的 恒成立?若存在,求出的取值范圍:若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校為了解學(xué)生喜歡通用技術(shù)課程“機(jī)器人制作”是否與學(xué)生性別有關(guān),采用簡單隨機(jī)抽樣的辦法在我校高一年級(jí)抽出一個(gè)有60人的班級(jí)進(jìn)行問卷調(diào)查,得到如下的列聯(lián)表:

喜歡

不喜歡

合計(jì)

男生

18

女生

6

合計(jì)

60

已知從該班隨機(jī)抽取1人為喜歡的概率是

()請(qǐng)完成上面的列聯(lián)表;

()根據(jù)列聯(lián)表的數(shù)據(jù),若按90%的可靠性要求,能否認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”?請(qǐng)說明理由.

參考臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是梯形,,,底面點(diǎn)的中點(diǎn).

()證明:

()與平面所成角的大小為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若處取到極值,求的值;

(2)若上恒成立,求的取值范圍;

(3)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為菱形, ,側(cè)面為等腰直角三角形,,點(diǎn)為棱的中點(diǎn).

(1)求證:面;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案