【題目】設F1(﹣c,0)、F2(c,0)是橢圓 =1(a>b>0)的兩個焦點,P是以F1F2為直徑的圓與橢圓的一個交點,若∠PF1F2=5∠PF2F1 , 則橢圓的離心率為( )
A.
B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】【2017南通揚州泰州蘇北四市高三二模】(本小題滿分14分)
如圖,在平面直角坐標系中,已知橢圓的離心率為,C為橢
圓上位于第一象限內的一點.
(1)若點的坐標為,求a,b的值;
(2)設A為橢圓的左頂點,B為橢圓上一點,且,求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面坐標系內,O為坐標原點,向量 =(1,7), =(5,1), =(2,1),點M為直線OP上的一個動點.
(1)當 取最小值時,求向量 的坐標;
(2)在點M滿足(I)的條件下,求∠AMB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有工程師6人,技術員12人,技工18人,要從這些人中抽取一個容量為n的樣本.如果采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個體;如果樣本容量增加一個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體,求樣本容量n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為 .
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017江西南昌十所重點二!選修4—4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2: .
(Ⅰ)求曲線C1和C2的直角坐標方程,并分別指出其曲線類型;
(Ⅱ)試判斷:曲線C1和C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;
(Ⅲ)設是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),前n和為Sn , 且Sn= (n∈N*).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設bn=an3n , 求數(shù)列{bn}的前n項的和Tn .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com