設(shè)函數(shù)f(x)x3bx2+4cxd的圖象關(guān)于原點(diǎn)對稱,f(x)的圖象在點(diǎn)P(1,m)處的切線的斜率為-6,且當(dāng)x=2時(shí),f(x)有極值.

(1)求a、bcd的值;

(2)求f(x)的單調(diào)區(qū)間;

(3)若x1x2∈[1,-1],求證:|f(x1)-f(x2)|≤

答案:
解析:

  (1)ax2+2bx+4c由條件可得bd=0,

  ∴a+4c=-6,4a+4c=0 解得a=2,c=-2

  故a=2,b=0,c=-2,d=0.             4分

  (2)f(x)=x3-8x,∴2x2-8=2(x+2)(x-2)

  令>0得x<-2或x>2,令<0得-2<x<2.

  ∴f(x)的單調(diào)增區(qū)間為(和[2,+;f(x)的單調(diào)減區(qū)間為[-2,2].  8分

  (3)證明:由(2)知f(x)在[-1,1]上單調(diào)遞減

  ∴當(dāng)x[-1,1]時(shí) f(1)≤f(x)≤f(-1)即f(x)≤亦即|f(x)|≤

  故當(dāng)x1,x2時(shí),|f(x1)|≤,|f(x2)|≤

  從而|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤

  即|f(x1)-f(x2)|.                 5分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二下學(xué)期期中考試?yán)頂?shù)學(xué)試卷(解析版) 題型:解答題

 已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2+a x.

(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,

求證:g(x)的極大值小于或等于10.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臨海市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,則

A.x1>-1           B.x2<0             C.x2>0             D.x3>2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江瑞安瑞祥高級中學(xué)高二下學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x3-12x+5,x∈R.

(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;

(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三第二次月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象在處的切線方程為12x+y-1=0.

⑴求a,b的值;

⑵求函數(shù)f(x)在閉區(qū)間上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水市高三第六次檢測數(shù)學(xué)文卷 題型:解答題

(12分)設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0)若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行。求:

(1)a的值;

(2)函數(shù)y=f (x) 的單調(diào)區(qū)間;

 

查看答案和解析>>

同步練習(xí)冊答案