(本小題滿分14分)
已知函數(shù)為常數(shù))是實(shí)數(shù)集上的奇函數(shù),函數(shù)
在區(qū)間上是減函數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若上恒成立,求實(shí)數(shù)的最大值;
(Ⅲ)若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,求的值.

(Ⅰ);(Ⅱ) ;(Ⅲ)

解析試題分析:(Ⅰ)是實(shí)數(shù)集上奇函數(shù),
,即   ……2分.
帶入,顯然為奇函數(shù).         ……3分
(Ⅱ)由(Ⅰ)知
要使是區(qū)間上的減函數(shù),則有恒成立,,所以.           ……5分
要使上恒成立,
只需時(shí)恒成立即可.
(其中)恒成立即可. ………7分
,則
,所以實(shí)數(shù)的最大值為              ………9分
(Ⅲ)由(Ⅰ)知方程,即,


當(dāng)時(shí),上為增函數(shù);
當(dāng)時(shí),上為減函數(shù);
當(dāng)時(shí),.     ………………11分

當(dāng)時(shí)是減函數(shù),當(dāng)時(shí),是增函數(shù),
當(dāng)時(shí),. ………………12分
只有當(dāng),即時(shí),方程有且只有一個(gè)實(shí)數(shù)根. …………14分
考點(diǎn):本題考查了導(dǎo)函數(shù)的運(yùn)用
點(diǎn)評:近幾年新課標(biāo)高考對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時(shí)要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點(diǎn)考查函數(shù)單調(diào)性、導(dǎo)數(shù)運(yùn)算、不等式方程的求解等基本知識,注重?cái)?shù)學(xué)思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運(yùn)用.把數(shù)學(xué)運(yùn)算的“力量”與數(shù)學(xué)思維的“技巧”完美結(jié)合

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(a>1).
(1)判斷函數(shù)f (x)的奇偶性;
(2)求f (x)的值域;
(3)證明f (x)在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/b/ojzmi3.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)若對任意的,不等式恒成立,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并證明;
(3)判斷函數(shù)f(x)在定義域上的單調(diào)性,并用定義證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)設(shè),討論的單調(diào)性;
(2)若對任意,,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù)
若函數(shù)在區(qū)間(a,a+)上存在極值,其中a>0,求實(shí)數(shù)a的取值范圍;
如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 若函數(shù)的圖象過兩點(diǎn),設(shè)函數(shù);
(1)求的定義域;
(2)求函數(shù)的值域,判斷g(x)奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)設(shè),討論的單調(diào)性;
(Ⅱ)若對任意恒有,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)…是自然對數(shù)的底數(shù))的最小值為
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)已知,試解關(guān)于的不等式 ;
(Ⅲ)已知.若存在實(shí)數(shù),使得對任意的,都有,試求的最大值.

查看答案和解析>>

同步練習(xí)冊答案