已知函數(shù)(a>1).
(1)判斷函數(shù)f (x)的奇偶性;
(2)求f (x)的值域;
(3)證明f (x)在(-∞,+∞)上是增函數(shù).

(1)是奇函數(shù).(2)值域?yàn)?-1,1).(3)設(shè)x1<x2,
。=,得到f (x1)-f (x2)<0,即f (x1)<f (x2).

解析試題分析:(1)是奇函數(shù).(2)值域?yàn)?-1,1).(3)設(shè)x1<x2,
。=
∵a>1,x1<x2,∴a<a. 又∵a+1>0,a+1>0,
∴f (x1)-f (x2)<0,即f (x1)<f (x2).
考點(diǎn):本題主要考查函數(shù)的奇偶性、單調(diào)性,指數(shù)函數(shù)的性質(zhì)。
點(diǎn)評(píng):中檔題,判斷函數(shù)的奇偶性,一要看定義域算法關(guān)于原點(diǎn)對(duì)稱,二是要研究f(-x)與f(x)關(guān)系;研究函數(shù)單調(diào)性,往往有兩種方法,一是利用單調(diào)函數(shù)的定義,二是利用導(dǎo)數(shù)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)如果函數(shù)上是單調(diào)減函數(shù),求的取值范圍;
(2)是否存在實(shí)數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

證明:函數(shù)是偶函數(shù),且在上是減少的。(13分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (a>0,且a≠1),=.
(1)函數(shù)的圖象恒過定點(diǎn)A,求A點(diǎn)坐標(biāo);
(2)若函數(shù)的圖像過點(diǎn)(2,),證明:函數(shù)(1,2)上有唯一的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

判斷函數(shù) (≠0)在區(qū)間(-1,1)上的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若a=,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)f(x)≥0,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)閇0,1]的函數(shù)同時(shí)滿足以下三個(gè)條件:①對(duì)任意,總有;②;③若,則有成立.
(1) 求的值;(2) 函數(shù)在區(qū)間[0,1]上是否同時(shí)適合①②③?并予以證明
(3) 假定存在,使得,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù))是實(shí)數(shù)集上的奇函數(shù),函數(shù)
在區(qū)間上是減函數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若上恒成立,求實(shí)數(shù)的最大值;
(Ⅲ)若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案