【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
① 與 的夾角;
②求| + |和| ﹣ |.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且Sn+an=1,數(shù)列{bn}為等差數(shù)列,且b1+b2=b3=3.
(1)求Sn;
(2)求數(shù)列(anbn)的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱ABC-A′B′C′,底面是邊長為1的正三角形,側(cè)面為全等的矩形且高為8,求一點自A點出發(fā)沿著三棱柱的側(cè)面繞行一周后到達A′點的最短路線長.
本題條件不變,求一點自A點出發(fā)沿著三棱柱的側(cè)面繞行兩周后到達A′點的最短路線長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)學歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 時,由n=k的假設(shè)到證明n=k+1時,等式左邊應(yīng)添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x+1|+|x﹣1|.
(Ⅰ)求不等式f(x)<4的解集;
(Ⅱ)若不等式f(x)﹣|a﹣1|<0有解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差s甲2和s乙2 , 并由此分析兩組技工的加工水平.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)f(x)在點(1,f(1))的切線平行于y=2x+3,求a的值.
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關(guān)于x的回歸直線方程;(參考公式: = , =y﹣ )
(2)已知每輛該型號汽車的收購價格為w=0.01x3﹣0.09x2﹣1.45x+17.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?(利潤=售價﹣收購價)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件產(chǎn)品甲的銷售收入為3千元,每件產(chǎn)品乙的銷售收入為4千元.這兩種產(chǎn)品都需要在A,B兩種不同的設(shè)備上加工,按工藝規(guī)定,一件產(chǎn)品甲和一件產(chǎn)品乙在各設(shè)備上需要加工工時如表所示:
設(shè)備 | A | B |
甲 | 2h | 1h |
乙 | 2h | 2h |
已知A,B兩種設(shè)備每月有效使用臺時數(shù)分別為400h、300h(一臺設(shè)備工作一小時稱為一臺時).分別用x,y表示計劃每月生產(chǎn)甲、乙產(chǎn)品的件數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問每月分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使每月的收入最大?并求出此最大收入.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com