【題目】設數(shù)列{an}的前n項和為Sn , 且Sn+an=1,數(shù)列{bn}為等差數(shù)列,且b1+b2=b3=3.
(1)求Sn;
(2)求數(shù)列(anbn)的前n項和Tn .
【答案】
(1)解:數(shù)列{an}的前n項和為Sn,且Sn+an=1,①
當n=1時,有a1=S1,可得2a1=1,即a1= ;
當n≥2時,Sn﹣1+an﹣1=1,②
①﹣②可得Sn﹣Sn﹣1+an﹣an﹣1=0,
2an=an﹣1,可得{an}為首項為 ,公比為 的等比數(shù)列,
即有an=( )n,n∈N*,
數(shù)列{bn}為公差為d的等差數(shù)列,且b1+b2=b3=3,
可得2b1+d=b1+2d=3,
解得b1=d=1,
則bn=1+n﹣1=n,n∈N*;
(2)解:anbn=n( )n,
前n項和Tn=1( )+2( )2+3( )3+…+(n﹣1)( )n﹣1+n( )n,
Tn=1( )2+2( )3+3( )4+…+(n﹣1)( )n+n( )n+1,
上面兩式相減可得, Tn=( )+( )2+( )3+…+( )n﹣1+( )n﹣n( )n+1
= ﹣n( )n+1,
化簡可得,Tn=2﹣(n+2)( )n.
【解析】1、利用Sn和an的關系可求出{an}為首項為 公比為 的等比數(shù)列,即得通項公式;再利用等差數(shù)列的通項公式求得d=1,進而得到bn。
2、利用等比數(shù)列求和公式的推導方法,在Tn的式子兩邊同時乘以公比,相減可求出Tn。
【考點精析】解答此題的關鍵在于理解數(shù)列的前n項和的相關知識,掌握數(shù)列{an}的前n項和sn與通項an的關系.
科目:高中數(shù)學 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,點D是BC的中點.
(1)求證:A1C∥平面AB1D;
(2)設M為棱CC1的點,且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=(logmx)2+2logmx﹣3(m>0,且m≠1).
(Ⅰ)當m=2時,解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命題正確的序號是 .
①如果函數(shù)f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值為127 .
②數(shù)列{an}滿足首項a1=2,ak+12﹣ak2=2,k∈N* , 當n∈M且n最大時,數(shù)列{an}有2048個.
③數(shù)列{an}(n=1,2,3,…,8)滿足a1=5,a8=7,|ak+1﹣ak|=2,k∈N* , 如果數(shù)列{an}中的每一項都是集合M的元素,則符合這些條件的不同數(shù)列{an}一共有33個.
④已知直線amx+any+ak=0,其中am , an , ak∈M,而且am<an<ak , 則一共可以得到不同的直線196條.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若圓C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一點到直線4x+3y﹣2=0的距離為1,則實數(shù)m的值為( )
A.4
B.16
C.4或16
D.2或4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線mx+ y﹣1=0在y軸上的截距是﹣1,且它的傾斜角是直線 =0的傾斜角的2倍,則( )
A.m=﹣ ,n=﹣2
B.m= ,n=2
C.m= ,n=﹣2
D.m=﹣ ,n=2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E , F分別為棱AB , CC1的中點,則在平面ADD1A1內且與平面D1EF平行的直線( )
A.不存在
B.有1條
C.有2條
D.有無數(shù)條
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com