(2013•珠海二模)已知變量x、y滿足
x-y≤0
x+y-3≤0
3x+y-3≥0
,則z=2x-y的值域是( 。
分析:作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=2x-y對(duì)應(yīng)的直線進(jìn)行平移,可得當(dāng)x=y=
3
2
時(shí),z=2x+y取得最大值為
3
2
;當(dāng)x=0,y=3時(shí),z=2x+y取得最小值為-3.由此即可得到z=2x-y的值域.
解答:解:作出不等式組
x-y≤0
x+y-3≤0
3x+y-3≥0
表示的平面區(qū)域,
得到如圖的△ABC及其內(nèi)部,其中A(0,3),B(
3
2
,
3
2
),C(
3
4
,
3
4

設(shè)z=F(x,y)=2x-y,將直線l:z=2x-y進(jìn)行平移,
當(dāng)l經(jīng)過(guò)點(diǎn)B時(shí),目標(biāo)函數(shù)z達(dá)到最大值,可得z最大值=F(
3
2
,
3
2
)=
3
2

當(dāng)l經(jīng)過(guò)點(diǎn)A時(shí),目標(biāo)函數(shù)z達(dá)到最小值,可得z最小值=F(0,3)=-3
因此,z的取值范圍為[-3,
3
2
],即z=2x-y的值域是[-3,
3
2
]
故選:D
點(diǎn)評(píng):本題給出二元一次不等式組,求目標(biāo)函數(shù)z=2x-y的取值范圍,著重考查了二元一次不等式組表示的平面區(qū)域和簡(jiǎn)單的線性規(guī)劃等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•珠海二模)某高校“統(tǒng)計(jì)初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如下表.為了檢驗(yàn)主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到Χ2=
50(13×20-10×7)2
23×27×20×30
≈4.84
因?yàn)棣?SUP>2>3.841,所以斷定主修統(tǒng)計(jì)專業(yè)與性別有關(guān)系,這種判斷出錯(cuò)的可能性最高為
5%
5%

       專業(yè)
性別
非統(tǒng)計(jì)專業(yè) 統(tǒng)計(jì)專業(yè)
13 10
7 20
P(K2≥k) 0.050 0.025 0.010 0.001
k 3.841 5.024 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•珠海二模)設(shè)i為虛數(shù)單位,則復(fù)數(shù)
4+3i
i
的虛部為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•珠海二模)已知函數(shù)f(x)=
x2-ax+1
4x-4×2x-a
,
x≥a
x<a

(1)若x<a時(shí),f(x)<1恒成立,求實(shí)數(shù)a的取值范圍;
(2)若a≥-4時(shí),函數(shù)f(x)在實(shí)數(shù)集R上有最小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•珠海二模)已知集合A={x|-1≤-x<2},B={x|-x≥0},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•珠海二模)已知非零向量
a
,
b
滿足
a
b
,則函數(shù)f(x)=(
a
x+
b
)2(x∈R)
是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案