【題目】已知數(shù)列,前n項(xiàng)和為,對(duì)任意的正整數(shù)n,都有恒成立.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知關(guān)于n的不等式…對(duì)一切恒成立,求實(shí)數(shù)a的取值范圍;
(3)已知 ,數(shù)列的前n項(xiàng)和為,試比較與的大小并證明.
【答案】(1);(2);(3),證明見(jiàn)解析.
【解析】
(1)利用數(shù)列的遞推關(guān)系式化簡(jiǎn),通過(guò)累積法轉(zhuǎn)化求解數(shù)列的通項(xiàng)公式.
(2)設(shè),利用后一項(xiàng)與前一項(xiàng)的差的符號(hào),判斷數(shù)列的單調(diào)性即可.
(3)通過(guò)放縮法,利用裂項(xiàng)消項(xiàng)法求解數(shù)列的和Tn=c1+c2+c3+…+cn然后推出結(jié)果.
(1)由題意,因?yàn)?/span>2Sn=(n+1)an,
當(dāng)n≥2時(shí),2Sn-1=nan-1,
兩式相減2an=(n+1)an-nan-1,可得(n-1)an=nan-1(n≥2),
又a1=1≠0,則an≠0,所以,
可得,
累乘得n≥2時(shí),,
n=1時(shí),a1=1也滿(mǎn)足上式,
所以數(shù)列的通項(xiàng)公式為an=n.
(2)設(shè),
則
=
=,
所以f(n)在n≥3,n∈N*上單調(diào)遞減,
所以,即.
(3),
則Tn=c1+c2+c3+…+cn
=
=.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】濱海市政府今年加大了招商引資的力度,吸引外資的數(shù)量明顯增加.一外商計(jì)劃在濱海市投資兩個(gè)項(xiàng)目,總投資20億元,其中甲項(xiàng)目的10年收益額(單位:億元)與投資額(單位:億元)滿(mǎn)足,乙項(xiàng)目的10年收益額(單位:億元)與投資額(單位:億元)滿(mǎn)足,并且每個(gè)項(xiàng)目至少要投資2億元.設(shè)兩個(gè)項(xiàng)目的10年收益額之和為.
(1)求;
(2)如何安排甲、乙兩個(gè)項(xiàng)目的投資額,才能使這兩個(gè)項(xiàng)目的10年收益額之和最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)為,是拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足.設(shè)線(xiàn)段的中點(diǎn)在上的投影為,則的最大值是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線(xiàn)截直線(xiàn)所得線(xiàn)段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)時(shí),解關(guān)于x的不等式;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 某廠一批產(chǎn)品的次品率為 ,則任意抽取其中10件產(chǎn)品一定會(huì)發(fā)現(xiàn)一件次品
B. 擲一枚硬幣,連續(xù)出現(xiàn)5次正面向上,第六次出現(xiàn)反面向上的概率與正面向上的概率仍然都為0.5
C. 某醫(yī)院治療一種疾病的治愈率為10%,那么前9個(gè)病人都沒(méi)有治愈,第10個(gè)人就一定能治愈
D. 氣象部門(mén)預(yù)報(bào)明天下雨的概率是90%,說(shuō)明明天該地區(qū)90%的地方要下雨,其余10%的地方不會(huì)下雨
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓上一點(diǎn),分別為關(guān)于軸,原點(diǎn),軸的對(duì)稱(chēng)點(diǎn),
(1)求四邊形面積的最大值;
(2)當(dāng)四邊形最大時(shí),在線(xiàn)段上任取一點(diǎn),若過(guò)的直線(xiàn)與橢圓相交于兩點(diǎn),且中點(diǎn)恰為,求直線(xiàn)斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是亞太區(qū)域國(guó)家與地區(qū)加強(qiáng)多邊經(jīng)濟(jì)聯(lián)系、交流與合作的重要組織,其宗旨和目標(biāo)是“相互依存、共同利益,堅(jiān)持開(kāi)放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會(huì)議于11月10日至11日在越南峴港舉行.某研究機(jī)構(gòu)為了了解各年齡層對(duì)會(huì)議的關(guān)注程度,隨機(jī)選取了100名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人參與會(huì)議的宣傳活動(dòng),求參與宣傳活動(dòng)的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com