15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{({x+1})^2},x<1\\{2^{x-2}},x≥1\end{array}$,則f(f(0))的值為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.4

分析 由已知得$f(0)={({0+1})^2}=1,f(1)={2^{1-2}}=\frac{1}{2}$,從而f(f(0))=f(1),由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{({x+1})^2},x<1\\{2^{x-2}},x≥1\end{array}$,
∴$f(0)={({0+1})^2}=1,f(1)={2^{1-2}}=\frac{1}{2}$,
∴f(f(0))=f(1)=$\frac{1}{2}$.
故選:B.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.復(fù)數(shù)z=i(1-i)的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對任意x∈(0,+∞),都有$f[f(x)-\frac{1}{x}]=2$,則$f(\frac{1}{7})$的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若等差數(shù)列{an}的公差為2,且a5是a2與a6的等比中項,則該數(shù)列的前n項和Sn取最小值時,n的值等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出下列函數(shù):①f(x)=$\frac{{{x^2}-1}}{x-1}$,g(x)=x+1;②f(x)=|x|,g(x)=$\sqrt{x^2}$;③f(x)=x2-2x-1,g(t)=t2-2t-1.其中,是同一函數(shù)的是( 。
A.①②③B.①③C.②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知冪函數(shù)f(x)=xa的圖象過點$({2,\sqrt{2}})$,則f(16)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=$\frac{x+1}{x}$,則f(1)等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知棱長都是2的直三棱柱的俯視圖是一個正三角形,則該直三棱柱的主視圖的面積不可能等于( 。
A.4B.2$\sqrt{3}$C.$\frac{19}{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若點(x,y)在雙曲線$\frac{{x}^{2}}{4}$-y2=1上,則3x2-2xy的最小值是6+4$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案