18.cos45°sin15°-sin45°cos15°的值為-$\frac{1}{2}$.

分析 直接利用兩角和與差的三角函數(shù)化簡求解即可.

解答 解:cos45°sin15°-sin45°cos15°=sin(15°-45°)=-sin30°=-$\frac{1}{2}$.
故答案為:-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),特殊角的三角函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),當(dāng)k為何值時(shí),
(1)k$\overrightarrow{a}$$+\overrightarrow$與$\overrightarrow{a}$$-3\overrightarrow$垂直?
(2)k$\overrightarrow{a}$$+\overrightarrow$與$\overrightarrow{a}$$-3\overrightarrow$夾角為鈍角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是奇函數(shù)又零點(diǎn)個(gè)數(shù)最多的是( 。
A.y=-x3-1,x∈RB.y=x+$\frac{1}{x}$,x∈R,且x≠0
C.y=-x3-x,x∈RD.y=-x3(x2-1),x∈R,且x≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax2-(2a+1)x+lnx(a∈R)
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f(x)+2ax,若g(x)有兩個(gè)極值點(diǎn)x1,x2,且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.甲、乙兩人下象棋,甲獲勝的概率是$\frac{1}{3}$,下成和棋的概率是$\frac{1}{2}$,則甲輸棋的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.tan$\frac{3π}{4}$的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若三個(gè)正數(shù)a,b,c成等比數(shù)列,其中a=5+2$\sqrt{6}$,c=5-2$\sqrt{6}$,則b=( 。
A.$\frac{1}{2}$B.1C.5D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.假設(shè)某次數(shù)學(xué)測試共有20道選擇題,每個(gè)選擇題都給了4個(gè)選項(xiàng)(其中有且僅有一個(gè)選項(xiàng)是正確的).評(píng)分標(biāo)準(zhǔn)規(guī)定:每題只選1項(xiàng),答對(duì)得5分,否則得0分.某考生每道題都給出了答案,并且會(huì)做其中的12道題,其他試題隨機(jī)答題,則他的得分X的方差D(X)=$\frac{75}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sinx-x,則不等式f(x+1)+f(2-2x)>0的解集是(  )
A.(-∞,$-\frac{1}{3}$)B.($-\frac{1}{3}$,+∞)C.(3,+∞)D.(-∞,3)

查看答案和解析>>

同步練習(xí)冊答案