若各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an-1=sinan(n∈N*),則下列說(shuō)法中正確的是( 。
A、{an}是單調(diào)遞減數(shù)列
B、{an}是單調(diào)遞增數(shù)列
C、{an}可能是等差數(shù)列
D、{an}可能是等比數(shù)列
考點(diǎn):數(shù)列的函數(shù)特性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用,等差數(shù)列與等比數(shù)列
分析:令f(x)=sinx-x,x∈[0,
π
2
]
,利用導(dǎo)數(shù)研究其單調(diào)性可得sinx<x,即可得出.
解答: 解:令f(x)=sinx-x,x∈[0,
π
2
]
,則f′(x)=cosx-1<0,∴函數(shù)f(x)在x∈[0,
π
2
]
單調(diào)遞減,∴f(x)<f(0)=0,∴sinx<x.
∵各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an=sinan+1>0,
∴an=sinan+1∈(0,1],
∴an<an+1,
因此{(lán)an}是單調(diào)遞增數(shù)列.
故選:B.
點(diǎn)評(píng):本題考查了數(shù)列的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了推理能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:
sin4θ
a
+
cos4θ
b
=
1
a+b
,求證:
sin8θ
a3
+
cos8θ
b3
=
1
(a+b)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程|x2-4x+3|-a=x至少有三個(gè)不相等的實(shí)數(shù)根,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程e2x-kx=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍為(  )
A、(
1
2
,+∞)
B、(
1
2
e,+∞)
C、(e,+∞)
D、(2e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(2,1),B(-2,2),C(5,6).
(1)求三條邊所在直線的斜率;
(2)直線l過(guò)A點(diǎn),且與線段BC相交,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

表中顯示的是某商品從4月份到10月份的價(jià)格變化統(tǒng)計(jì)如下:
 x(月) 4 5 6 7 8 910 
 y(元) 15 16.9 19 20.9 23.1 25.1 27
在一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)這四個(gè)函數(shù)模型中,請(qǐng)確認(rèn)最能代表上述變化的函數(shù),并預(yù)測(cè)該商品11月份的價(jià)格為
 
元(精確到整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:3x+y+a=0,它過(guò)圓x2+y2+2x-4y=0的圓心.
(1)求a的值,并寫(xiě)出直線l的方程;
(2)求直線l在x軸和y軸的截距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為2的正方形ABCD內(nèi)任選一點(diǎn)P,則∠APB為鈍角的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程
1+|x|
=
1-y
表示的曲線是( 。
A、兩條線段
B、兩條直線
C、兩條射線
D、一條射線和一條線段

查看答案和解析>>

同步練習(xí)冊(cè)答案