分析 求得函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義,可得切線的斜率,運用直線的斜截式方程,計算即可得到所求切線的方程.
解答 解:函數(shù)f(x)=(2x+1)ex的導(dǎo)數(shù)為f′(x)=2ex+(2x+1)ex,
可得f(x)的圖象在點(0,1)處的切線斜率為k=2e0+e0=3,
即有圖象在點(0,1)處的切線方程為y=3x+1.
故答案為:y=3x+1.
點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運用直線方程是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③④ | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=$\frac{1}{2}$,b=1 | B. | a=$\frac{1}{2}$,b=-1 | C. | a=-$\frac{1}{2}$,b=1 | D. | a=-$\frac{1}{2}$,b=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | q=1 | B. | q≠1 | C. | q>1 | D. | q<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1和2 | B. | 2和3 | C. | 3和4 | D. | 2和4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com