4.已知實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{xy≥0}\\{{x}^{2}+{y}^{2}≤4}\\{x+y-1≤0}\end{array}\right.$,則z=2x+y的最小值是( 。
A.-2$\sqrt{5}$B.2C.2$\sqrt{5}$D.1

分析 由題意作平面區(qū)域,從而可得當(dāng)直線z=2x+y與圓在第三象限相切時(shí),有最小值,從而解得.

解答 解:由題意作平面區(qū)域如下,
,
結(jié)合圖象可知,
當(dāng)直線z=2x+y與圓在第三象限相切時(shí),有最小值,
此時(shí),d=$\frac{|z|}{\sqrt{5}}$=2,
故z=-2$\sqrt{5}$,
故選:A.

點(diǎn)評(píng) 本題考查了線性規(guī)劃,同時(shí)考查了學(xué)生的作圖能力及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)求值:$\frac{\sqrt{1-2sin190°•cos170°}}{cos170°+\sqrt{1-co{s}^{2}190°}}$
(2)已知sinθ+2cosθ=0,求$\frac{cos2θ-sin2θ}{1+co{s}^{2}θ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在平面四邊形ABCD中,已知E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點(diǎn).若|EG|2-|HF|2=1,設(shè)|AD|=x,|BC|=y,|AB|=z,|CD|=1,則$\frac{2x+y}{{z}^{2}+8}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=cosωx(ω>0)在區(qū)間(-$\frac{π}{3}$,$\frac{π}{4}$)上有且只有兩個(gè)極值點(diǎn),則ω的取值范圍是( 。
A.[2,3)B.(2,3]C.(3,4]D.[3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在(a+b)n的展開(kāi)式中,第2項(xiàng)與第6項(xiàng)的二項(xiàng)式系數(shù)相等,則n=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算下列各式:
(1)sin$\frac{25π}{3}$+cos$\frac{17π}{4}$+tan$\frac{23π}{6}$;
(2)tan(-$\frac{5π}{6}$)+cos(-$\frac{23π}{4}$)+sin(-$\frac{17π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知a2-3a+1=0,求(a3+a-3)(a3-a-3)÷[(a4+a-4+1)(a-a-1)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.己知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-2x,x<0\end{array}$,則f[f(-2)]=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=Asin(ωx)+b(A>0,ω>0)的最大值為2,最小值為0,其圖象相鄰兩對(duì)稱(chēng)軸間的距離為2,則f(1)+f(2)+…+f(2008)=2008.

查看答案和解析>>

同步練習(xí)冊(cè)答案