19.在(a+b)n的展開式中,第2項與第6項的二項式系數(shù)相等,則n=( 。
A.6B.7C.8D.9

分析 直接由題意得到${C}_{n}^{1}={C}_{n}^{5}$,再由組合數(shù)公式的性質(zhì)得到n值.

解答 解:由(a+b)n的展開式中,第2項與第6項的二項式系數(shù)相等,
得${C}_{n}^{1}={C}_{n}^{5}$,即n=1+5=6.
故選:A.

點評 本題考查二項式系數(shù)的性質(zhì),考查了組合數(shù)公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tanα=-$\frac{1}{3}$,計算:
(1)$\frac{sinα+2cosα}{5cosα-sinα}$;
(2)$\frac{1}{{sin2α+{{cos}^2}α}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知tanα=-2,求$\frac{si{n}^{4}α+si{n}^{2}α•co{s}^{2}α}{2co{s}^{2}α-3si{n}^{2}α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.向量$\overrightarrow{m}$=(cosx,sinx),$\overrightarrow$=(-cosx,$\sqrt{3}$cosx),x∈R,函數(shù)f(x)=$\overrightarrow{m}$•($\frac{1}{2}$$\overrightarrow{m}$-$\overrightarrow{n}$).
(1)求使不等式f(x)≥$\frac{1}{2}$成立的x的取值范圍;
(2)記△ABC內(nèi)角A,B,C的對邊分別為a,b,c,若f($\frac{B}{2}$)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知角α終邊不在坐標(biāo)軸上,試分析$\frac{|sinα|}{sinα}$+$\frac{|cosα|}{cosα}$可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{xy≥0}\\{{x}^{2}+{y}^{2}≤4}\\{x+y-1≤0}\end{array}\right.$,則z=2x+y的最小值是( 。
A.-2$\sqrt{5}$B.2C.2$\sqrt{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若ax≥xa對?x∈(0,+∞)恒成立,則正數(shù)a的取值集合為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{{log}_a}x,x≥1}\end{array}}\right.$,若a=2,求f(f(2))=0;若f(x)是R上的單調(diào)函數(shù),則a的取值范圍是[$\frac{1}{7}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知平面上三個向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$的模均為1,它們相互之間的夾角均為120°.
(1)求($\overrightarrow a$-$\overrightarrow b$)•$\overrightarrow c$的值;
(2)若|k$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c}$|>1(k∈R),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案