11.設(shè)函數(shù)f(x)=loga|x+b|在定義域內(nèi)具有奇偶性,f(b-2)與f(a+1)的大小關(guān)系是( 。
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能確定

分析 由奇偶函數(shù)性質(zhì)知函數(shù)f(x)定義域關(guān)于原點對稱,可求得b值,進(jìn)而可判斷f(x)的奇偶性,分a>1,0<a<1兩種情況討論,借助函數(shù)的單調(diào)性可作出大小比較.

解答 解:∵f(x)在定義域內(nèi)具有奇偶性,
∴函數(shù)f(x)的定義域關(guān)于原點對稱,
∴b=0,則f(x)=loga|x|為偶函數(shù),
∴f(b-2)=f(-2)=f(2)=loga2,
若a>1,則y=logax遞增,且2<a+1,
∴l(xiāng)oga2<loga(a+1),即f(b-2)<f(a+1);
若0<a<1,則y=logax遞減,且2>a+1,
∴l(xiāng)oga2<loga(a+1),即f(b-2)<f(a+1);
綜上,f(b-2)<f(a+1),
故選:C.

點評 本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,屬中檔題,解決本題的關(guān)鍵是根據(jù)函數(shù)f(x)的奇偶性求得b值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)m∈R,過定點A的動直線x+my=0和過定點B的動直線mx-y-m+3=0交與點P(x,y),則PA+PB的最大值是2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,有f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}(x+1),\;x∈[0,1)\\ 1-|x-3|,\;x∈[1,+∞).\end{array}$,則關(guān)于x的函數(shù)F(x)=f(x)-$\frac{1}{2}$的所有零點之和為( 。
A.$\sqrt{2}$-1B.$\frac{{\sqrt{2}}}{2}$-1C.1-$\frac{{\sqrt{2}}}{2}$D.1-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.點P是曲線y=x2-1nx上任意一點,則點P到直線y=x-2的距離的最小值是( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)f(x)=$sin(2x-\frac{π}{4})$向右平移$\frac{3π}{8}$個單位,再將所得的函數(shù)圖象上的各點縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)與x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x軸圍成的圖形面積為( 。
A.$\frac{5}{2}$B.$1+\frac{{\sqrt{3}}}{2}$C.$\frac{3}{2}$D.$1-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC的角A,B,C所對的邊分別為a,b,c,∠C=90°,則$\frac{a+b}{c}$的取值( 。
A.(0,2)B.$({0,\sqrt{2}}]$C.$({1,\sqrt{2}}]$D.$[{1,\sqrt{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正項數(shù)列{an}的前n項和為Sn,且Sn=$\frac{{{a_n}({a_n}+2)}}{4}$(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:$\frac{1}{{{a_1}^3}}+\frac{1}{{{a_2}^3}}+\frac{1}{{{a_3}^3}}+…+\frac{1}{{{a_n}^3}}<\frac{5}{32}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)全集U=R,M={x|-2≤x≤2},N={x|x<1},則(∁UM)∩N等于{x|x<-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)y=$\frac{2-cosx}{sinx}$(0<x<π)的最小值.

查看答案和解析>>

同步練習(xí)冊答案