如圖,已知直線l:x=my+1過橢圓的右焦點F,拋物線:的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點M,且,當m變化時,探求λ1+λ2的值是否為定值?若是,求出λ1+λ2的值,否則,說明理由;(3)接AE、BD,試證明當m變化時,直線AE與BD相交于定點.
(1)
(2) 當m變化時,λ1+λ2的值為定值;
(3)當m變化時,AE與BD相交于定點
【解析】
試題分析:(1)知橢圓右焦點F(1,0),∴c=1,
拋物線的焦點坐標,∴∴b2=3
∴a2=b2+c2=4∴橢圓C的方程 4分
(2)知m≠0,且l與y軸交于,
設直線l交橢圓于A(x1,y1),B(x2,y2)
由- 5分
∴△=(6m)2+36(3m2+4)=144(m2+1)>0
∴ 6分
又由
∴
同理- 7分
∴
∵
∴
所以,當m變化時,λ1+λ2的值為定值; 9分
(3):由(2)A(x1,y1),B(x2,y2),∴D(4,y1),E(4,y2)
方法1)∵ 10分
當時,=
= 12分
∴點在直線lAE上, 13分
同理可證,點也在直線lBD上;
∴當m變化時,AE與BD相交于定點 14分
方法2)∵ 10分
- 11分
= 12分
∴kEN=kAN∴A、N、E三點共線,
同理可得B、N、D也三點共線; 13分
∴當m變化時,AE與BD相交于定點. 14分
考點:橢圓的方程,直線與橢圓的位置關系
點評:解決的關鍵是對于橢圓的幾何性質的表示,以及聯立方程組的思想結合韋達定理來求解,屬于基礎題。
科目:高中數學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
MA |
AF |
MB |
BF |
5 |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
MA |
AF |
MB |
BF |
查看答案和解析>>
科目:高中數學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
a2+1 |
2 |
AN |
NE |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com