某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為元,并且每件產(chǎn)品需向總公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬(wàn)件.
(1)求該分公司一年的利潤(rùn)(萬(wàn)元)與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該分公司一年的利潤(rùn)最大?并求出的最大值.
(1),;(2)當(dāng)每件產(chǎn)品的售價(jià)時(shí),該分公司一年的利潤(rùn)最大,且最大利潤(rùn)萬(wàn)元.
解析試題分析:(1)解實(shí)際應(yīng)用題,關(guān)鍵是正確理解題意,正確列出等量關(guān)系或函數(shù)關(guān)系式.本題中利潤(rùn)每件產(chǎn)品的利潤(rùn)銷售量,進(jìn)而根據(jù)已知即可得出該分公司一年的利潤(rùn)與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式;(2)根據(jù)(1)中確定的函數(shù)關(guān)系式,由函數(shù)的最值與函數(shù)的導(dǎo)數(shù)的關(guān)系,求出該函數(shù)的最大值即可.
(1)分公司一年的利潤(rùn)(萬(wàn)元)與售價(jià)的函數(shù)關(guān)系式為
, 6分
(2)
令,得或 (不合題意,舍去) 8分
當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減 10分
于是:當(dāng)每件產(chǎn)品的售價(jià)時(shí),該分公司一年的利潤(rùn)最大,且最大利潤(rùn)萬(wàn)元 12分
考點(diǎn):導(dǎo)數(shù)的實(shí)際應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若存在, 使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知函數(shù)在處取得極值-2.
(1)求函數(shù)的解析式;
(2)求曲線在點(diǎn)處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在x=1處切線的方程;
(2)當(dāng)a>0時(shí),討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),函數(shù)的導(dǎo)函數(shù),且,其中為自然對(duì)數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)(2011•重慶)設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(Ⅱ)設(shè)g(x)=f′(x)e﹣x.求函數(shù)g(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)()
(1)當(dāng)時(shí),求函數(shù)的極值;(2)當(dāng)時(shí),討論的單調(diào)性。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),(為常數(shù)).
(1)函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象相切,求實(shí)數(shù)的值;
(2)若,,、使得成立,求滿足上述條件的最大整數(shù);
(3)當(dāng)時(shí),若對(duì)于區(qū)間內(nèi)的任意兩個(gè)不相等的實(shí)數(shù)、,都有
成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com