15.設(shè)向量$\overrightarrow{a}$=(2,4)與向量$\overrightarrow$=(x,6)共線,則實(shí)數(shù)x=( 。
A.2B.3C.4D.6

分析 利用向量共線的充要條件得到坐標(biāo)的關(guān)系求出x.

解答 解;因?yàn)橄蛄?\overrightarrow{a}$=(2,4)與向量$\overrightarrow$=(x,6)共線,
所以4x=2×6,解得x=3;
故選:B.

點(diǎn)評 本題考查了向量共線的坐標(biāo)關(guān)系;如果兩個向量向量$\overrightarrow{a}$=(x,y)與向量$\overrightarrow$=(m,n)共線,那么xn=ym.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C1:x2=4y的焦點(diǎn)F也是橢圓C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的一個焦點(diǎn).C1與C2的公共弦長為2$\sqrt{6}$.
(Ⅰ)求C2的方程;
(Ⅱ)過點(diǎn)F的直線l與C1相交于A、B兩點(diǎn),與C2相交于C、D兩點(diǎn),且$\overrightarrow{AC}$與$\overrightarrow{BD}$同向.
(1)若|AC|=|BD|,求直線l的斜率;
(2)設(shè)C1在點(diǎn)A處的切線與x軸的交點(diǎn)為M,證明:直線l繞點(diǎn)F旋轉(zhuǎn)時,△MFD總是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如題圖,圓O的弦AB,CD相交于點(diǎn)E,過點(diǎn)A作圓O的切線與DC的延長線交于點(diǎn)P,若PA=6,AE=9,PC=3,CE:ED=2:1,則BE=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若不等式組$\left\{{\begin{array}{l}{x+y-2≤0}\\{x+2y-2≥0}\\{x-y+2m≥0}\end{array}}\right.$,表示的平面區(qū)域?yàn)槿切,且其面積等于$\frac{4}{3}$,則m的值為( 。
A.-3B.1C.$\frac{4}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份20102011201220132014
時間代號t12345
儲蓄存款y(千億元)567810
(Ⅰ)求y關(guān)于t的回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$.
(Ⅱ)用所求回歸方程預(yù)測該地區(qū)2015年(t=6)的人民幣儲蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.lg0.01+log216的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若sinα=-$\frac{5}{13}$,則α為第四象限角,則tanα的值等于( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比數(shù)列;q:(a12+a22+…+an-12)(a22+a32+…+an2)=(a1a2+a2a3+…+an-1an2,則( 。
A.p是q的充分條件,但不是q的必要條件
B.p是q的必要條件,但不是q的充分條件
C.p是q的充分必要條件
D.p既不是q的充分條件,也不是q的必要條件

查看答案和解析>>

同步練習(xí)冊答案