8.根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程.
(1)經(jīng)過兩點(diǎn)$P({-3,2\sqrt{7}})$和$Q({-6\sqrt{2},-7})$;
(2)與雙曲線$\frac{x^2}{4}-\frac{y^2}{3}=1$有共同的漸近線,且過點(diǎn)$({2,2\sqrt{3}})$.

分析 (1)設(shè)雙曲線的方程為my2-ny2=1(mn>0),代入P,Q的坐標(biāo),解方程即可得到所求雙曲線的方程;
(2)設(shè)所求雙曲線的方程為$\frac{x^2}{4}-\frac{y^2}{3}=λ({λ≠0})$,代入點(diǎn)$({2,2\sqrt{3}})$,解方程即可得到所求雙曲線的方程.

解答 解:(1)設(shè)雙曲線的方程為my2-ny2=1(mn>0),
將點(diǎn)P、Q坐標(biāo)代入可得9m-28n=1,且72m-49n=1,
求得$m=-\frac{1}{75}$,$n=-\frac{1}{25}$.
∴雙曲線的標(biāo)準(zhǔn)方程為$\frac{y^2}{25}-\frac{x^2}{75}=1$.
(2)設(shè)所求雙曲線的方程為$\frac{x^2}{4}-\frac{y^2}{3}=λ({λ≠0})$,
點(diǎn)$({2,2\sqrt{3}})$代入得$\frac{4}{4}$-$\frac{12}{3}$=λ,
解得λ=-3,
∴所求雙曲線的標(biāo)準(zhǔn)方程為$\frac{y^2}{9}-\frac{x^2}{12}=1$.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用待定系數(shù)法,以及與漸近線方程的關(guān)系,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線l:$\sqrt{3}x+y-4=0$相切,且圓O與坐標(biāo)軸x正半軸交于A,y正半軸交于B,點(diǎn)P為圓O上異于A,B的任意一點(diǎn).
(Ⅰ)求圓O的方程;
(Ⅱ)求$\overrightarrow{PA}•\overrightarrow{PB}$的最大值及點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知數(shù)列{an}的通項(xiàng)公式是關(guān)于n的一次函數(shù),a3=7,a7=19,則a10的值為( 。
A.26B.28C.30D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,底面是正三角形的直三棱柱ABC-A1B1C1中,D是BC的中點(diǎn),AA1=AB=2.
(Ⅰ)求證:A1C∥平面AB1D;
(Ⅱ)求直線A1D與平面AB1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列四個(gè)命題:
①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題
②“全等三角形的面積相等”的否命題
③“若k>0,則方程x2+2x-k=0有實(shí)根”的逆否命題
④“若ab≠0,則a≠0”的否命題
其中真命題的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.高一(9)班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:則統(tǒng)計(jì)表中的a•p=65.
組數(shù)分組低碳族的人數(shù)占本組的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)300.3
第六組[50,55)150.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在極坐標(biāo)系中,已知圓C的圓心C$(3,\frac{π}{6})$,半徑為1.Q點(diǎn)在圓周上運(yùn)動(dòng),O為極點(diǎn).求圓C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知關(guān)于x的不等式ax2+bx+c>0的解集為{x|1<x<2},則不等式cx2-bx+a>0的解集為(-1,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列各數(shù)中,與cos1030°相等的是(  )
A.cos 50°B.-cos 50°C.sin 50°D.-sin 50°

查看答案和解析>>

同步練習(xí)冊(cè)答案