(1)點(diǎn)M到點(diǎn)F(2,0)的距離比它到直線x=-3的距離小1,求點(diǎn)M滿足的方程.

(2)曲線上點(diǎn)M(x,y)到定點(diǎn)F(2,0)的距離和它到定直線x=8的距離比是常數(shù)2,求曲線方程.

答案:
解析:

  (1)

  (2)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M到點(diǎn)F(-
2
,0)的距離與到直線x=-
2
2
的距離之比為
2

(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)若過點(diǎn)E(0,1)的直線與曲線C在y軸左側(cè)交于不同的兩點(diǎn)A、B,點(diǎn)P(-2,0)滿足
PN
=
1
2
(
PA
+
PB
)
,求直線PN在y軸上的截距d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)點(diǎn)M到點(diǎn)F(2,0)的距離比它到直線x=-3的距離小1,求點(diǎn)M滿足的方程.
(2)曲線上點(diǎn)M(x,y)到定點(diǎn)F(2,0)的距離和它到定直線x=8的距離比是常數(shù)2,求曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、已知點(diǎn)M到點(diǎn)F(4,0)的距離比它到直線l:x+5=0的距離小1,點(diǎn)A的坐標(biāo)為(2,3),則 MA+MF的最小值為
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(0,1),直線l:y=-2.
(1)若動(dòng)點(diǎn)M到點(diǎn)F的距離比它到直線l的距離小1,求動(dòng)點(diǎn)M的軌跡E的方程;
(2)過軌跡E上一點(diǎn)P作圓C:x2+(y-3)2=1的切線,切點(diǎn)分別為A、B,求四邊形PACB的面積S的最小值和此時(shí)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案