某商場從生產(chǎn)廠家以每件20元購進(jìn)一批商品,若該商品零售價定為元,則銷售量(單位:件)與零售價(單位:元)有如下關(guān)系:,問該商品零售價定為多少元時毛利潤最大,并求出最大毛利潤.(毛利潤銷售收入進(jìn)貨支出)
零售價定為每件元時,有最大毛利潤為元.
解析試題分析:根據(jù)題意可知,毛利潤銷售收入進(jìn)貨支出,則毛利潤與零售價的函數(shù)關(guān)系為,再利用導(dǎo)數(shù)求出函數(shù)的最大值.
試題解析:由題意知
.
令,得或(舍).
此時.
因?yàn)樵?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/d/8dlvz.png" style="vertical-align:middle;" />附近的左側(cè),右側(cè),
是極大值.
根據(jù)實(shí)際意義知,是最大值,即零售價定為每件元時,有最大毛利潤為元.
考點(diǎn):本題考查了導(dǎo)數(shù)在解決實(shí)際問題中的應(yīng)用,以及導(dǎo)數(shù)在函數(shù)問題中的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a為實(shí)數(shù),x=1是函數(shù)的一個極值點(diǎn)。
(Ⅰ)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè)函數(shù),對于任意和,有不等式
恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對于函數(shù)與定義域上的任意實(shí)數(shù),若存在常數(shù),使得和都成立,則稱直線為函數(shù)與的“分界線”.設(shè)函數(shù),,與是否存在“分界線”?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的反函數(shù)為,設(shè)的圖象上在點(diǎn)處的切線在y軸上的截距為,數(shù)列{}滿足:
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)在數(shù)列中,僅最小,求的取值范圍;
(Ⅲ)令函數(shù)數(shù)列滿足,求證:對一切n≥2的正整數(shù)都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時,都取得極值.
(1)求的值;
(2)若,求的單調(diào)區(qū)間和極值;
(3)若對都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),點(diǎn)為一定點(diǎn),直線分別與函數(shù)的圖象和軸交于點(diǎn),,記的面積為.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時, 若,使得, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
(1)當(dāng)時,函數(shù)在處有極小值,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)和有相同的極大值,且函數(shù)在區(qū)間上的最大值為,求實(shí)數(shù)的值(其中是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實(shí)數(shù)滿足,,設(shè)函數(shù)
(1)當(dāng)時,求的極小值;
(2)若函數(shù)()的極小值點(diǎn)與的極小值點(diǎn)相同,求證:的極大值小于等于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求的單調(diào)區(qū)間和極值;
(2)當(dāng)m為何值時,不等式 恒成立?
(3)證明:當(dāng)時,方程內(nèi)有唯一實(shí)根.
(e為自然對數(shù)的底;參考公式:.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com