偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時,f(x)=1-x,則關(guān)于x的方程,在x∈[0,3]上解的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:首先有已知條件推導(dǎo)函數(shù)f(x)的性質(zhì),再利用函數(shù)與方程思想把問題轉(zhuǎn)化,數(shù)形結(jié)合,即可得解.
解答:解:∵f(1-x)=f(x+1)
∴原函數(shù)的對稱軸是x=1,且f(-x)=f(x+2)
又∵f(x)是偶函數(shù)
∴f(-x)=f(x),
∴f(x)=f(x+2),
∴原函數(shù)的周期T=2.
又∵x∈[0,1]時,f(x)=-x+1.
設(shè)y1=f(x),y2=,
則關(guān)于x的方程,在x∈[0,3]上解的個數(shù)是即為函數(shù) y1=f(x)
和 y2=交點的個數(shù).
由以上條件,可畫出 y1=f(x),y2=的圖象,當(dāng)x=時,y1>y2,當(dāng)x=1時,y1<y2,
故在(,1)上有一個交點.
結(jié)合圖象可得在[0,3]上y1=f(x),y2=共有4個交點,
∴在[0,3]上,原方程有4個根,
故選D.
點評:本題考察函數(shù)的奇偶性、周期性、對稱性,體現(xiàn)了函數(shù)與方程思想,數(shù)形結(jié)合思想,屬較難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足:對任意的x1,x2∈[0,+∞)(x1≠x2),有
f(x2)-f(x1)
x2-x1
<0
.則( 。
A、f(3)<f(-2)<f(1)
B、f(1)<f(-2)<f(3)
C、f(-2)<f(1)<f(3)
D、f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定在實數(shù)集R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1),當(dāng)x∈[2,3]時,f(x)=x,則當(dāng)x∈[-2,0]時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上單調(diào)遞增,a=f(3),b=f(
2
),c=f(2),則a,b,c大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•甘肅一模)定義在R上的偶函數(shù)f(x)滿足:對任意的x1,x2∈[0,+∞)(x1≠x2),有
f(x2)-f(x1)
x2-x1
<0
,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上定義的連續(xù)偶函數(shù)f(x)滿足f(x)=f(2-x),在區(qū)間[1,2]上單調(diào),且f(0)•f(1)<0,則函數(shù)f(x)在區(qū)間[0,2 010]上的零點的個數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案