計算
2
0
(ex-x-1)dx=
 
考點:定積分
專題:導數(shù)的概念及應用
分析:根據(jù)定積分的法則計算即可
解答: 解:
2
0
(ex-x-1)dx=(ex-
1
2
x2-x)|
 
2
0
=e2-
1
2
×22-2-1=e2-5,
故答案為:e2-5.
點評:本題考查了定積分的計算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=x+1.
(1)若當x∈R時,不等式f(x)≥λg(x)恒成立,求實數(shù)λ的取值范圍;
(2)求函數(shù)h(x)=|f(x)|+λ|g(x)|在區(qū)間x∈[-2,0]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律,設(shè)第n個圖案中黑色瓷磚數(shù)為an,白色瓷磚數(shù)為bn,則
a40
b40
=( 。
A、
1
10
B、
1
8
C、
1
6
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知球的半徑為2,相互垂直的兩個平面分別截球面得兩個圓,若兩圓的公共弦長為2,則兩圓的圓心距等于C( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,若A=60°,a=
3
,c=2,則b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我國東部某風景區(qū)內(nèi)住房著一個少數(shù)民族部落,該部落擬投資1500萬元用于修復和加強民俗文化基礎(chǔ)設(shè)施,據(jù)測算,修復好部落民俗文化基礎(chǔ)設(shè)施后,任何一個月(每月按30天計算)中第n天的游客人數(shù)a,近似滿足an=10+
10
n
(單位:千人),第n天游客人均消費金額b,近似滿足bn=162-|n-18|(單位:元)
(Ⅰ)求該部落第n天的日旅游收入cn(單位:千元,1≤n≤30,n∈N*)的表達式;
(Ⅱ)若以一個月中最低日旅游收入金額的1%作為每一天應回收的投資成本,試問該部落至少經(jīng)過幾年就可以收回全部投資成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用符號[x)表示超過x的最小整數(shù),如[π)=4,[-1.08)=-1,則有下列命題:
①函數(shù)f(x)=[x)-x,x∈R,則值域為(0,1];
②如果數(shù)列{an}是等差數(shù)列,n∈N*,那么數(shù)列{[an)}也是等差數(shù)列;
③若x、y∈{0,
5
2
,3,1,5,
2
3
,-
3
2
,7},則滿足方程[x)•[y)=4的有5組解;
④已知向量
a
=(x,y),
b
=([x),[y)),則<
a
,
b
>不可能為直角角.
其中,所有正確命題的序號應是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(x+3)-loga(3-x),a>0且a≠1.
(1)求函數(shù)f(x)的定義域;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若a>1,指出函數(shù)的單調(diào)性,并求函數(shù)f(x)在區(qū)間[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
2x+y-5≥0
x-2y≤0
x+3y-10≤0
,若z=x+y,則z的取值范圍是
 

查看答案和解析>>

同步練習冊答案