已知箱中裝有4個(gè)白球和5個(gè)黑球,且規(guī)定:取出一個(gè)白球得2分,取出一個(gè)黑球得1分.現(xiàn)從該箱中任。o(wú)放回,且每球取到的機(jī)會(huì)均等)3個(gè)球,記隨機(jī)變量X為取出此3球所得分?jǐn)?shù)之和.
(1)求X的分布列;
(2)求得分大于4的概率.
考點(diǎn):相互獨(dú)立事件的概率乘法公式,互斥事件的概率加法公式
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(1)X的可能取值有:3,4,5,6,求出相應(yīng)的概率可得所求X的分布列;
(2)由(1)以及P(X>4)=P(X=5)+P(X=6),即可得到結(jié)論.
解答: 解。1)由題意得X取3,4,5,6,且
P(X=3)=
C
3
5
C
3
9
=
5
42
,P(X=4)=
C
1
4
C
2
5
C
3
9
=
10
21

P(X=5)=
C
2
4
C
1
5
C
3
9
=
5
14
,P(X=6)=
C
3
4
C
3
9
=
1
21

所以X的分布列為
X 3 4 5 6
P
5
42
10
21
5
14
1
21
(2)P(X>4)=P(X=5)+P(X=6)=
5
14
+
1
21
=
5
42
點(diǎn)評(píng):本題主要考查隨機(jī)事件的概率和隨機(jī)變量的分布列,同時(shí)考查抽象概括、運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四邊形ABCD中,
AC
=(2,4),
BD
=(-6,3),則該四邊形的面積為( 。
A、3
5
B、2
5
C、5
D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2在區(qū)間[1,2]上的平均變化率為(  )
A、4B、5C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(2)記bn=log2an,求{
1
bnbn+1
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點(diǎn),D1E⊥CD,AB=2BC=2.
(1)求證:BC⊥D1E;
(2)若AA1=
2
,求三棱錐D1-B1CB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x
1+x
-aln(1+x),g(x)=ln(1+x)-bx.
(1)若函數(shù)f(x)在x=0處有極值,求函數(shù)f(x)的最大值;
(2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式g(x)<0在(0,+∞)上恒成立?若存在,求出b的取值范圍;若不存在,說(shuō)明理由;
(3)證明:不等式-1<
n
k=1
k
k2+1
-lnn≤
1
2
(n=1,2.…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,AE⊥面ABCD,DF∥AE,AE=4,G為EC的中點(diǎn),且GF∥面ABCD.
(Ⅰ)求點(diǎn)B到面EFC的距離;
(Ⅱ)求二面角B-EC-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列各三角函數(shù)式的值.
(1)2cos300°+sin630°
(2)已知tanα=
1
2
,求
2cosα-3sinα
3cosα+4sinα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)=
-2x+a
2x+1+b
(a,b∈R). 
(1)求a與b的值;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案