17.已知一個扇形的圓心角為3弧度,半徑為4,則這個扇形的面積等于( 。
A.48B.24C.12D.6

分析 由已知先求弧長,利用扇形的面積公式即可計(jì)算得解.

解答 解:因?yàn)樯刃蔚幕¢Ll=3×4=12,
則面積S=$\frac{1}{2}$×12×4=24,
故選:B.

點(diǎn)評 本題主要考查了弧長公式,扇形的面積公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}為公差不為0的等差數(shù)列,Sn為其前n項(xiàng)和,a5和a9的等差中項(xiàng)為13,且a2•a5=a1•a14.令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn
(Ⅰ)求Tn;
(Ⅱ)是否存在不同的正整數(shù)m,n,使得T2,Tm,Tn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由;
(Ⅲ)若cn=$\frac{{{3^{a_n}}}}{{{3^{a_n}}+2}}$,是否存在互不相等的正整數(shù)m,n,t,使得m,n,t成等差數(shù)列,且cm,cn,ct成等比數(shù)列?若存在,求出所有的m,n,t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{OA}$=(-2,1),$\overrightarrow{OB}$=(0,2),且$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,則點(diǎn)C的坐標(biāo)是( 。
A.(2,6)B.(-2,-6)C.(2,-6)D.(-2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{{{m^2}x}}{{{x^2}-m}}$,且m≠0.
(Ⅰ)當(dāng)m=1時,求曲線y=f(x)在點(diǎn)(0,0)處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)f(x)有最值,寫出m的取值范圍.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一條河的兩岸平行,河水從西向東流去,一艘船從河的南岸某處出發(fā)駛向北岸.已知船的速度|v1|=20km/h,水流速度|v2|=10km/h,要使該船行駛的航程最短,則船速v1的方向與河道南岸上游的夾角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=ln x,g(x)=x2-2ax+4a-1,其中a為實(shí)常數(shù).
(1)若函數(shù)f[g(x)]在區(qū)間[1,3]上為單調(diào)函數(shù),求a的取值范圍;
(2)若函數(shù)g[f(x)]在區(qū)間[1,e3]上的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)隨機(jī)變量X的概率分布如表所示,且隨機(jī)變量X的均值E(X)為2.5,
 X 1 2 3 4
 P a b $\frac{3}{8}$ $\frac{3}{16}$
則隨機(jī)變量X的方差V(X)為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實(shí)數(shù)a,b滿足(a+bi)•(1+i)=4i,其中i是虛數(shù)單位,若z=a+bi-4,則在復(fù)平面內(nèi),復(fù)數(shù)z所對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案