如圖,已知、為不在同一直線上的三點(diǎn),且,.

1求證平面//平面;

2平面,且,,求證:平面

3在(2)的條件下,設(shè)點(diǎn)上的動(dòng)點(diǎn),求當(dāng)取得最小值時(shí)的長.

 

【答案】

1)詳見解析;(2)詳見解析;(3.

【解析】

試題分析:1)通過證明平行四邊形分別證明,利用直線與平面平行的判定定理得到平面平面,最后利用平面與平面平行的判定定理證明平面平面;(2)先證明平面,于是得到,由再由四邊形為正方形得到,最后利用直線與平面垂直的判定定理證明平面;(3)將三棱柱

的側(cè)面沿著展開,利用、、三點(diǎn)共線求出的最小值,并利用相似三角形求出的長度.

試題解析:1)證明:,四邊形是平行四邊形,

,平面,

同理可得平面,,平面平面

2平面,平面平面平面,

平面平面

,,,平面,

,,,

,為正方形,,

,平面

3)將三棱柱的側(cè)面繞側(cè)棱旋轉(zhuǎn)到與側(cè)面在同一平面內(nèi)如圖示,連結(jié)于點(diǎn),則由平面幾何的知識(shí)知,這時(shí)取得最小值,

,.

考點(diǎn):1.平面與平面平行;2.直線與平面垂直;3.空間幾何體的側(cè)面展開圖

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知棱長為1的正方體ABCD-A1B1C1D1
(1)線段A1B上是否存在一點(diǎn)P,使得A1B⊥平面PAC?若存在,確定P點(diǎn)的位置,若不存在,說明理由;
(2)點(diǎn)P在A1B上,若二面角C-AP-B的大小是arctan2,求BP的長;
(3)Q點(diǎn)在對(duì)角線B1D,使得A1B∥平面QAC,求
B1QQD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),長軸均為且在軸上,短軸長分別為,,過原點(diǎn)且不與軸重合的直線,的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為,,。記的面積分別為。

(I)當(dāng)直線軸重合時(shí),若,求的值;

(II)當(dāng)變化時(shí),是否存在與坐標(biāo)軸不重合的直線,使得?并說明理由。

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三學(xué)業(yè)水平考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知、為不在同一直線上的三點(diǎn),且,.

1求證:平面//平面

2平面,且,,求證:平面

3)在(2)的條件下,求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省馬鞍山高三三模理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知分別是橢圓的左、右頂點(diǎn),點(diǎn)在橢圓上,且直線與直線的斜率之積為

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,已知是橢圓上不同于頂點(diǎn)的兩點(diǎn),直線交于點(diǎn),直線交于點(diǎn).① 求證:;② 若弦過橢圓的右焦點(diǎn),求直線的方程.

 

 

查看答案和解析>>

同步練習(xí)冊答案