【題目】如圖,已知四面體中,,且兩兩互相垂直,點(diǎn)的中心.

1)求二面角的大。ㄓ梅慈呛瘮(shù)表示);

2)過(guò),垂足為,求繞直線旋轉(zhuǎn)一周所形成的幾何體的體積;

3)將繞直線旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過(guò)程中,直線與直線所成角記為,求的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)三垂線定理,取中點(diǎn),連接,所以,則即為二面角的平面角,解三角形即可求出二面角的大;

2)按照?qǐng)A錐的定義可知,繞直線旋轉(zhuǎn)一周所形成的幾何體為兩個(gè)圓錐的組合體,計(jì)算出圓錐底面半徑以及圓錐的高,即可求出體積;

3)取中點(diǎn),連接,以為坐標(biāo)原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)出A點(diǎn)坐標(biāo),求出,利用向量的夾角公式可求出,最后根據(jù)平面幾何知識(shí)即可求出的取值范圍.

1)取中點(diǎn),連接,因?yàn)辄c(diǎn)在平面的射影在中線上,

所以,由二面角的定義可知,即為二面角的平面角.在中,,

所以,即,

所以二面角的大小為

2)過(guò),經(jīng)計(jì)算得,

由此得,

所以繞直線旋轉(zhuǎn)一周所形成的幾何體的體積:

3)取中點(diǎn),連接,以為坐標(biāo)原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,

,,

設(shè),則,

所以

平面上,點(diǎn)的軌跡方程為,

,則

所以,

于是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),來(lái)自一帶一路沿線的20國(guó)青年評(píng)選出了中國(guó)的新四大發(fā)明:高鐵、掃碼支付、共享單車(chē)和網(wǎng)購(gòu).其中共享單車(chē)既響應(yīng)綠色出行號(hào)召,節(jié)能減排,保護(hù)環(huán)境,又方便人們短距離出行,增強(qiáng)靈活性.某城市試投放3個(gè)品牌的共享單車(chē)分別為紅車(chē)、黃車(chē)、藍(lán)車(chē),三種車(chē)的計(jì)費(fèi)標(biāo)準(zhǔn)均為每15分鐘(不足15分鐘按15分鐘計(jì))1元,按每日累計(jì)時(shí)長(zhǎng)結(jié)算費(fèi)用,例如某人某日共使用了24分鐘,系統(tǒng)計(jì)時(shí)為30分鐘.A同學(xué)統(tǒng)計(jì)了他1個(gè)月(按30天計(jì))每天使用共享單車(chē)的時(shí)長(zhǎng)如莖葉圖所示,不考慮每月自然因素和社會(huì)因素的影響,用頻率近似代替概率.設(shè)A同學(xué)每天消費(fèi)元.

1)求的分布列及數(shù)學(xué)期望;

2)各品牌為推廣用戶(hù)使用,推出APP注冊(cè)會(huì)員的優(yōu)惠活動(dòng):紅車(chē)月功能使用費(fèi)8元,每天消費(fèi)打5折;黃車(chē)月功能使用費(fèi)20元,每天前15分鐘免費(fèi),之后消費(fèi)打8折;藍(lán)車(chē)月功能使用費(fèi)45元,每月使用22小時(shí)之內(nèi)免費(fèi),超出部分按每15分鐘1元計(jì)費(fèi).設(shè)分別為紅車(chē),黃車(chē),藍(lán)車(chē)的月消費(fèi),寫(xiě)出的函數(shù)關(guān)系式,參考(1)的結(jié)果,A同學(xué)下個(gè)月選擇其中一個(gè)注冊(cè)會(huì)員,他選哪個(gè)費(fèi)用最低?

3)該城市計(jì)劃3個(gè)品牌的共享單車(chē)共3000輛正式投入使用,為節(jié)約居民開(kāi)支,隨機(jī)調(diào)查了100名用戶(hù)一周的平均使用時(shí)長(zhǎng)如下表:

時(shí)長(zhǎng)

(0,15]

(15,30]

(30,45]

(45,60]

人數(shù)

16

45

34

5

在(2)的活動(dòng)條件下,每個(gè)品牌各應(yīng)該投放多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)集合,對(duì)于任意,定義,對(duì)任意,定義,記為集合的元素個(gè)數(shù),求的值;

2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中,若存在,求出所有的,若不存在,說(shuō)明理由;

3)已知當(dāng)時(shí),有,根據(jù)此信息,若對(duì)任意,都有,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),設(shè)直線分別是曲線的兩條不同的切線;

(1)若函數(shù)為奇函數(shù),且當(dāng)時(shí),有極小值為-4;

(i)求的值;

(ii)若直線亦與曲線相切,且三條不同的直線交于點(diǎn),求實(shí)數(shù)m的取值范圍;

(2)若直線,直線與曲線切于點(diǎn)B且交曲線于點(diǎn)D,直線與曲線切于點(diǎn)C且交曲線于點(diǎn)A,記點(diǎn)的橫坐標(biāo)分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M為△ABC的中線AD的中點(diǎn),過(guò)點(diǎn)M的直線分別交線段AB、AC于點(diǎn)P、Q兩點(diǎn),設(shè),,記.

1)求的值;

2)求函數(shù)的解析式(指明定義域);

3)設(shè),,若對(duì)任意,總存在,使得成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是函數(shù)的圖象上的一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為,且前項(xiàng)和滿(mǎn)足:.

1)求數(shù)列,的通項(xiàng)公式;

2)若數(shù)列的通項(xiàng),求數(shù)列的前項(xiàng)和

3)若數(shù)列的前項(xiàng)和為,是否存在最大的整數(shù),使得對(duì)任意的正整數(shù)n,均有總成立?若成立,求出t;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線C的頂點(diǎn)在原點(diǎn)焦點(diǎn)Fy軸上,開(kāi)口向上,焦點(diǎn)到準(zhǔn)線的距離為

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)已知拋物線C過(guò)焦點(diǎn)F的動(dòng)直線l交拋物線于AB兩點(diǎn),O為坐標(biāo)原點(diǎn),求證為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)站用“100分制調(diào)查一社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機(jī)抽取10名,以下莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉);若幸福度不低于95分,則稱(chēng)該人的幸福度為極幸福

1)從這10人中隨機(jī)選取3人,記表示抽到極幸福的人數(shù),求的分布列及數(shù)學(xué)期望;

2)以這10人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到極幸福的人數(shù),求的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點(diǎn);

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案